Ein bakterieller Werkzeugkasten für die Besiedlung von Pflanzen
Durch einen innovativen experimentellen Ansatz haben Forschende am Max-Planck-Institut für Pflanzenzüchtungsforschung zentrale Gene identifiziert, die von kommensalen Bakterien benötigt werden, um Pflanzen zu besiedeln. Die Ergebnisse tragen wesentlich zum Verständnis bei, wie Bakterien erfolgreiche Wirt-Kommensal-Beziehungen aufbauen.
Pflanzen beherbergen eine beeindruckende Vielfalt von Mikroorganismen, darunter Bakterien, Archaeen und Pilze. Diese Mikroben bilden komplexe Gemeinschaften, sogenannte Mikrobiome, auf den Wurzeln und Organen der Pflanzen. Obwohl sie für das bloße Auge unsichtbar sind, ist ihre Bedeutung nicht zu unterschätzen. Sie spielen eine entscheidende Rolle bei der Pflanzenernährung, beeinflussen die Gesundheit der Pflanzen, stärken ihre Toleranz gegenüber Stressfaktoren wie Trockenheit und unterstützen die Abwehr von Krankheitserregern. Die Nutzung dieser mikrobiellen Partnerschaften könnte einen bedeutenden Beitrag zu einer nachhaltigeren Landwirtschaft leisten, die weniger auf Düngemittel und Pestizide angewiesen ist.
Das Verständnis der Mechanismen, mit denen Mikroorganismen ihre Wirte besiedeln, ist Voraussetzung für die Entwicklung und Anwendung von Mikrobiomen mit nützlichen Funktionen. Daher untersuchen Forschende häufig, wie einzelne Mikroorganismen mit Pflanzen interagieren. Die genaue Art und Weise, wie mehrere Mikroben gleichzeitig Pflanzen besiedeln und mit ihnen interagieren, damit komplexere Wirt-Kommensal-Beziehungen entstehen können, bleibt den Wissenschaftler:innen bisher weitgehend unbekannt. Dies ist frustrierend, da Informationen über die Interaktion einer einzelnen Mikrobe mit ihrer Wirtspflanze nicht zwangsläufig repräsentativ für die komplexe Realität einer mikrobiellen Gemeinschaft sind. Die Herausforderung war im Wesentlichen technischer Natur – wie kann man das Verhalten einzelner Stämme in einem Heuhaufen von Mikroben und der Pflanze selbst präzise charakterisieren?
Um das Problem anzugehen, untersuchten Nathan Vannier, Erstautor der Studie, und Stéphane Hacquard die Besiedlung einzelner Mikroben auf den Wurzeln von Pflanzen in komplexen Gemeinschaften. Ihr Ansatz begann mit mikrobenfreien Ackerschmalwandpflanzen. Anschließend führten sie eine definierte Gemeinschaft von Mikroben ein, die die beobachtete Vielfalt an Pflanzenwurzeln in der Natur repräsentierte. Ziel war es zu untersuchen, wie diese Mikroben ihren Wirt besiedeln. Da sie die Identität dieser Bakterien kannten und über Referenzsequenzen für ihr genetisches Material verfügten, konnten sie charakterisieren, welche mikrobiellen Gene während der Pflanzenbesiedlung aktiviert oder unterdrückt wurden.
Diese Analyse ermöglichte es ihnen, zahlreiche Gene zu identifizieren, die bei vielen verschiedenen Bakterien in Wurzeln stark exprimiert wurden, und die möglicherweise an der Besiedlung des Wirts beteiligt sind. Ein Gen reguliert bakterielle Virulenz und Stressreaktionen, ein anderes ist am Transport von Transmembranpolymeren beteiligt und eine Gruppe von Genen agiert gemeinsam als Phosphatsensor. Die Mutation von drei dieser Gene in Bakterien beeinträchtigte deren Fähigkeit, Wurzeln zu besiedeln, ohne ihr Wachstum zu beeinflussen. Der Ansatz der Autoren ermöglichte es ihnen, eine zentrale Gruppe von Genen zu identifizieren, die viele Bakterien benötigen, um auf Pflanzenwurzeln zu überleben.
Die von Hacquard und seinem Team angewandte Strategie ermöglichte es, sowohl die strukturelle als auch die funktionelle Organisation komplexer mikrobieller Gemeinschaften zu verstehen, die Pflanzenwurzeln besiedeln. Die identifizierten Gene werden möglicherweise von sehr unterschiedlichen Bakterien genutzt, um sich auf ihren Wirten anzusiedeln und dort zu überleben.
„Unsere Ergebnisse könnten möglicherweise den Weg für die Entwicklung nützlicher Bakterien ebnen, die den Wirt effizient besiedeln und die Gesundheit des Wirts fördern können. Dies hat nicht nur Auswirkungen auf eine nachhaltige Landwirtschaft, sondern auch auf Fortschritte in der medizinischen Forschung“, betont Stéphane Hacquard.
Wissenschaftliche Ansprechpartner:
Dr Stéphane Hacquard
hacquard@mpipz.mpg.de
+49 221 5062-322
Originalpublikation:
Media Contact
Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Aufladen der Zukunft: Batterien für extreme Kälte dank negativer thermischer Ausdehnung
Die meisten Feststoffe dehnen sich aus, wenn die Temperatur steigt, und schrumpfen, wenn sie abkühlen. Manche Materialien zeigen jedoch das Gegenteil und dehnen sich bei Kälte aus. Lithiumtitanphosphat ist eine…
Selbstzerstörende Krebszellen: Durchbruch in der RNA-Forschung
Jülicher Wissenschaftler nutzen neuartige RNA-Technologie, um Tumore im Gehirn selektiv auszuschalten. Eine anpassbare Plattformtechnologie zur Zerstörung von Glioblastom-Krebszellen Mit einer speziellen RNA-Molekül-Technologie hat ein Team unter der Leitung von Jülicher…
Ausdauertraining: Wie es das Leben von Herzinsuffizienz-Patienten verbessert
Können Kraft- und Ausdauertraining für Patienten mit einer bestimmten Form von Herzinsuffizienz von Vorteil sein? Ein Forschungsteam aus Greifswald hat diese Frage zusammen mit sieben weiteren Forschungszentren in Deutschland untersucht….