Ein Gedächtnis ohne Gehirn

The slime mold Physarum polycephalum consists of a single biological cell. Microinjection allows to mark the flow in Physarum in color.
Bjoern Kscheschinski / MPIDS

Wie ein einzelliger Schleimpilz ohne zentrales Nervensystem kluge Entscheidungen trifft.

Wenn wir uns an vergangene Ereignisse erinnern, können wir klügere Entscheidungen für die Zukunft treffen. Forscherinnen des Max-Planck-Instituts für Dynamik und Selbstorganisation (MPI-DS) und der Technischen Universität München (TUM) haben jetzt herausgefunden, wie der Schleimpilz Physarum polycephalum Erinnerungen speichern kann – obwohl er kein zentrales Nervensystem hat.

Die Fähigkeit, Informationen zu speichern und abzurufen, verschafft einem Organismus einen klaren Vorteil bei der Nahrungssuche oder bei der Vermeidung von Gefahren. Bislang wird sie aber nur mit Organismen in Verbindung gebracht, die ein Nervensystem besitzen.

Doch auch der einzellige Schleimpilz Physarum polycephalum hat diese Fähigkeit entwickelt und kann damit Informationen über seine Umgebung speichert und nutzen, wie Mirna Kramar (MPI-DS) und Prof. Karen Alim (TUM und MPI-DS) in einer nun in den Proceedings of the National Academy of Science (PNAS) veröffentlichten Studie herausfanden.

Fenster in die Vergangenheit

Physarum polycephalum fasziniert Forschende seit Jahren. An der Grenze zwischen Tier-, Pflanzen-und Pilzreich gelegen, bietet dieser einzigartige Organismus Einblicke in die frühe Evolutionsgeschichte der Eukaryonten, zu denen auch wir Menschen gehören.

Sein Körper ist eine riesige Einzelzelle, die aus miteinander verbundenen Röhren besteht. Sie bilden ein faszinierendes Netzwerk, das mehrere Zentimeter oder sogar Meter groß werden kann, was ihm im Guinness-Buch der Rekorde den Titel als größte Zelle der Erde einbrachte.

Seine ausgeklügelten Fähigkeiten, sein röhrenförmiges Netzwerk an eine sich ändernde Umgebung anzupassen, brachte ihm das Attribut „intelligent“ ein. Er nutzt dieses Netzwerk als Gedächtnis – auch ohne über ein Nervensystem oder ein organisierendes Zentrum zu verfügen.

Wie die beiden Forscherinnen herausfanden, webt der Organismus Erinnerungen an Nahrungsorte direkt in die Architektur des netzwerkartigen Körpers ein und nutzt die damit gespeicherten Informationen bei zukünftigen Entscheidungen.

Speicherung der Erinnerung im Netzwerk

„Es ist sehr aufregend, wenn sich ein Projekt aus einer einzigen experimentellen Beobachtung entwickelt“, sagt Karen Alim, Leiterin der Forschungsgruppe Biologische Physik und Morphogenese am MPI-DS in Göttingen und Professorin für die Theorie biologischer Netzwerke an der TU München.

Als die Forscherinnen die Fortbewegung und die Nahrungsaufnahme des Organismus verfolgten, fanden sie einen deutlichen Abdruck der Nahrungsquellen im Muster der dickeren und dünneren Röhren des Netzwerks, der auch lange nach der Nahrungsaufnahme noch beobachtbar war.

„Angesichts der schnellen Reorganisation des Netzwerks von P. polycephalum“, sagt Karen Alim, „weckte die Persistenz dieses Abdrucks bei uns die Idee, dass die Netzwerkarchitektur selbst als Gedächtnis der Nahrungsorte dienen könnte. Allerdings mussten wir zunächst den Mechanismus entschlüsseln, der hinter der Bildung der Netzwerkmusters steckt.“

Erinnerungen fließen in Entscheidungen ein

Dazu kombinieren die Forscherinnen mikroskopische Beobachtungen der Anpassungen des röhrenförmigen Netzwerks mit theoretischer Modellierung. Ein Kontakt mit Nahrung löst im Inneren der Zelle die Freisetzung einer Chemikalie aus, die sich vom Fundort der Nahrung durch den gesamten Organismus bewegt und die Röhren im Netzwerk weicher macht, so dass sich der Organismus neu auf die Nahrung ausrichtet.

„Dort wo die Röhren allmählich weicher werden, kommen auch die noch vorhandenen Abdrücke früherer Nahrungsquellen ins Spiel. Dort wird die gespeicherte Information abgerufen“, sagt Mirna Kramar, Erstautorin der Studie. „Vergangene Nahrungsaufnahmen sind in die Hierarchie der Röhrendurchmesser eingebettet, konkret in der Anordnung von dicken und dünnen Röhren im Netzwerk.“

Für die nun transportierte Weichmacher-Chemikalie wirken die dicken Röhren im Netzwerk wie Autobahnen im Verkehrsnetz und ermöglichen einen schnellen Transport durch den gesamten Organismus. Allerdings fließen auch frühere Nahrungsorte, die in der Netzwerkarchitektur eingeprägt sind, in die Entscheidung über die künftige Bewegungsrichtung mit ein, wie die Forscherinnen herausfanden.

Design auf Basis universeller Prinzipien

Die Fähigkeit von Physarum, Erinnerungen zu bilden, ist angesichts der Einfachheit dieses lebenden Netzwerks verblüffend. „Es ist bemerkenswert, dass der Organismus einen so einfachen Mechanismus verwendet und ihn dennoch auf so fein abgestimmte Weise kontrolliert“, sagt Karen Alim.

„Das stellt ein wichtiges Puzzlestück zum Verständnis des Verhaltens dieses uralten Organismus dar und weist darauf hin, dass dem Verhalten von Lebewesen universelle Prinzipien zugrunde liegen. Wir sehen mögliche Anwendungen dieser Erkenntnisse bei der Entwicklung von intelligenten Materialien und dem Bau von weichen Robotern, die durch komplexe Umgebungen navigieren“, schließt Karen Alim.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Karen Alim
Theorie biologischer Netzwerke
Physik-Department
Technische Universität München
James-Franck-Str. 1, 85748 Garching
Tel.: +49 89 289-12192 – E-Mail: k.alim@tum.de

Originalpublikation:

Encoding memory in tube diameter hierarchy of living flow network
Mirna Kramar and Karen Alim
PNAS, 22.02.2021 – DOI: 10.1073/pnas.2007815118

Weitere Informationen:

https://www.pnas.org/content/118/10/e2007815118 Originalpublikation
https://www.tum.de/nc/die-tum/aktuelles/pressemitteilungen/details/36459/ Presseinformation auf der TUM-Website
http://www.bpm.ph.tum.de/ Website der Arbeitsgruppe

Media Contact

Dr. Andreas Battenberg Corporate Communications Center
Technische Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Menschen vs Maschinen – Wer ist besser in der Spracherkennung?

Sind Menschen oder Maschinen besser in der Spracherkennung? Eine neue Studie zeigt, dass aktuelle automatische Spracherkennungssysteme (ASR) unter lauten Bedingungen eine bemerkenswerte Genauigkeit erreichen und manchmal sogar die menschliche Leistung…

KI-System analysiert subtile Hand- und Gesichtsgesten zur Gebärdenspracherkennung.

Nicht in der Übersetzung verloren: KI erhöht Genauigkeit der Gebärdenspracherkennung

Zusätzliche Daten können helfen, subtile Gesten, Handpositionen und Gesichtsausdrücke zu unterscheiden Die Komplexität der Gebärdensprachen Gebärdensprachen wurden von Nationen weltweit entwickelt, um dem lokalen Kommunikationsstil zu entsprechen, und jede Sprache…

Forscherin Claudia Schmidt analysiert durch Gletscherschmelze beeinflusste Wasserproben arktischer Fjorde.

Brechen des Eises: Gletscherschmelze verändert arktische Fjordökosysteme

Die Regionen der Arktis sind besonders anfällig für den Klimawandel. Es mangelt jedoch an umfassenden wissenschaftlichen Informationen über die dortigen Umweltveränderungen. Forscher des Helmholtz-Zentrums Hereon haben nun an Fjordsystemen anorganische…