Eine molekulare Maschine bei der Arbeit
- Forschende entschlüsseln den Zusammenbau eines Enzyms, das das Treibhausgas N2O abbaut. Treibhausgas leistet einen stetig wachsenden Beitrag zum Abbau der Ozonschicht. N2O-Reduktase ist das bislang einzig bekannte Enzym, das dieses Gas in harmlosen Stickstoff und Wasser umwandeln kann.
- Veröffentlichung in Nature: Forschende haben die Komponenten einer molekularen Maschine isoliert und charakterisiert
- Das Team um Prof. Dr. Oliver Einsle von der Universität Freiburg entdeckte eine bisher nicht beschriebene Funktion und machte damit einen großen Schritt hin zu einer Nutzbarmachung des Enzyms N2O-Reduktase zur Reduktion atmosphärischen Distickstoffmonoxids.
Das Treibhausgas Distickstoffmonoxid (N2O) entsteht als Nebenprodukt industrieller Prozesse und durch den Einsatz von Düngemitteln in der Landwirtschaft. Es leistet einen stetig wachsenden Beitrag zum Klimawandel und zum Abbau der Ozonschicht. Dabei ist es chemisch so unreaktiv, dass es für sehr lange Zeit in der Atmosphäre verbleibt. In der Natur ist bislang nur ein einziges Enzym bekannt, das dieses Gas in harmlosen Stickstoff und Wasser umwandeln kann: die N2O-Reduktase. Diese ist jedoch ein kupferhaltiges Metallenzym und als solches empfindlich gegenüber dem Sauerstoff in unserer Atemluft. Dr. Christoph Müller und Dr. Lin Zhang aus der Arbeitsgruppe von Prof. Dr. Oliver Einsle am Institut für Biochemie der Universität Freiburg haben nun zusammen mit Prof. Dr. Juan Du und Prof. Dr. Wei Lü vom Van Andel Research Institute in Grand Rapids/USA einen wesentlichen Fortschritt im Verständnis dieses Enzyms erzielt.
Komponenten einer molekularen Maschine isoliert und charakterisiert
Im Hinblick auf biotechnologische Anwendungen der N2O-Reduktase ist von entscheidender Bedeutung, die Bereitstellung von Kupferionen während des Zusammenbaus des Enzyms in der Zelle zu verstehen und zu kontrollieren. Die Wissenschaftler*innen haben daher die Komponenten einer mehrteiligen molekularen Maschine, die diesen Zusammenbau bewerkstelligt, isoliert und mittels Kryo-Elektronenmikroskopie charakterisiert. Ihre Arbeiten haben sie in der aktuellen Ausgabe des Fachjournals Nature vorgestellt.
Mechanischer Prozess: Reifung der Metallzentren der N2O-Reduktase
Die Reifung der Metallzentren der N2O-Reduktase ist ein überraschend mechanischer Prozess, in dem Konformationsänderungen des Membranproteins NosDFY durch den Verbrauch von biochemischer Energie in der Zelle ausgelöst werden. Dies versetzt den Komplex in die Lage, ein einzelnes Kupferion von einem speziellen Transportprotein, NosL, zu übernehmen und dann der noch kupferfreien oder nur teilassemblierten N2O-Reduktase anzubieten.
Neue Funktion entdeckt
Durch eine Vielzahl hoch aufgelöster Strukturmodelle konnten die Forschenden die Einzelschritte dieses komplexen Prozesses in hohem Detail abbilden und verstehen. Sie entdeckten eine bisher nicht beschriebene Funktion dieser wichtigen Klasse von Membranproteinen und machten einen großen Schritt hin zu einer Nutzbarmachung des Enzyms N2O-Reduktase zur Reduktion atmosphärischen Distickstoffmonoxids.
Faktenübersicht:
• Prof. Dr. Oliver Einsle ist Professor für Biochemie an der Fakultät für Chemie und Pharmazie der Universität Freiburg.
• Er und sein Team untersuchen Struktur und Funktion, sowie die Biogenese komplexer Enzymsysteme. Der Schwerpunkt der Arbeiten liegt dabei auf der enzymatischen Aktivierung kleiner Moleküle wie Stickstoff, Lachgas oder Kohlenmonoxid, die durch ihre chemische Stabilität nur schwer umsetzbar, gleichzeitig aber von großer ökologischer und ökonomischer Bedeutung sind.
• Er ist Mitglied in verschiedenen DFG-Projekten an der Universität Freiburg. 2020 wurde er in die Leopoldina gewählt.
• Originalpublikation: Müller, C., Zhang, L., Zipfel, S., Topitsch, A., Lutz, M., Eckert, J., Prasser, B., Chami, M., Lü, W., Du, J., Einsle, O. (2022): Molecular interplay of an assembly machinery for nitrous oxide reductase. Nature. DOI: 10.1038/s41586-022-05015-2.
Wissenschaftliche Ansprechpartner:
Prof. Dr. Oliver Einsle
Institut für Biochemie
Fakultät für Chemie und Pharmazie
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-6058
E-Mail: einsle@biochemie.uni-freiburg.de
Originalpublikation:
Müller, C., Zhang, L., Zipfel, S., Topitsch, A., Lutz, M., Eckert, J., Prasser, B., Chami, M., Lü, W., Du, J., Einsle, O. (2022): Molecular interplay of an assembly machinery for nitrous oxide reductase. Nature. DOI: 10.1038/s41586-022-05015-2.
Weitere Informationen:
https://kommunikation.uni-freiburg.de/pm/2022/eine-molekulare-maschine-bei-der-a…
Media Contact
Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Parallele Pfade: Das Verständnis von Malariaresistenz bei Schimpansen und Menschen
Die nächsten Verwandten des Menschen passen sich genetisch an Lebensräume und Infektionen an Überleben des am besten Angepassten: Genetische Anpassungen bei Schimpansen aufgedeckt Görlitz, 10.01.2025. Schimpansen verfügen über genetische Anpassungen,…
Du bist, was du isst – Stanford-Studie verbindet Ballaststoffe mit Modulation von Anti-Krebs-Genen
Die Ballaststofflücke: Ein wachsendes Problem in der amerikanischen Ernährung Ballaststoffe sind bekanntlich ein wichtiger Bestandteil einer gesunden Ernährung, doch weniger als 10 % der Amerikaner konsumieren die empfohlene Mindestmenge. Eine…
Vertrauen Sie Ihrem Bauchgefühl – RNA-Protein-Entdeckung für eine bessere Immunität
HIRI-Forscher entschlüsseln Kontrollmechanismen der Polysaccharidverwertung in Bacteroides thetaiotaomicron. Forschende des Helmholtz-Instituts für RNA-basierte Infektionsforschung (HIRI) und der Julius-Maximilians-Universität (JMU) Würzburg haben ein Protein sowie eine Gruppe kleiner Ribonukleinsäuren (sRNAs) in…