Erbgut als Kleber
Wissenschaftler um die Professoren Clemens Richert und Stefan Bräse am Karlsruher Institut für Technologie (KIT) haben nun einen solchen Stoff als „Biokleber“ entwickelt. Die Ergebnisse wurden in der Fachzeitschrift ChemBioChem veröffentlicht (2009, 10, 1335-1339).
Um dreidimensionale Gitter mit Poren im Nanometer-Bereich (1 Nanometer = 1 Millionstel Millimeter) aufzubauen, knüpfen sie extrem kurze Stücke von einsträngiger Desoxyribonukleinsäure (DNA), die von der Natur ursprünglich als Träger der genetischen Information entwickelt wurde, an ein sternförmiges Molekül. Wie im Erbgut der Lebewesen lagern sich jeweils zwei DNA-Einzelstränge, die aufgrund der Abfolge ihrer Bausteine zueinander komplementär sind, zu einem Doppelstrang zusammen. An jedem Zentralmolekül sind vier dieser „klebrigen“ DNA-Enden wie die Ecken eines Tetraeders angeordnet. Sie können sich daher mit jeweils vier anderen Molekülen verbinden. Durch Selbstorganisation entsteht so eine komplexe räumliche Gitterstruktur mit neuen Eigenschaften.
Poröse Materialien spielen als Katalysatoren, Speichermedien und strukturgebende Komponenten, beispielsweise in der Technik oder der Medizin, eine wichtige Rolle. „Wir konnten zum ersten Mal zeigen, dass mit Hilfe kurzer DNA-Schnipsel quasi-unendliche Strukturen für solche Anwendungen aufgebaut werden können“, beschreibt Richert die Arbeit, die am Centrum für Funktionelle Nanostrukturen (CFN) des KIT in Zusammenarbeit mit den Arbeitsgruppen Bräse (Chemie), Wenzel (Physik) und Puchta (Biologie) entstand. Dafür reichten bereits DNA-Abschnitte von nur zwei Nukleotiden, also den Buchstaben, aus denen DNA besteht, damit sich die Gerüste in wässriger Lösung bildeten. Dieses Material lagert sich dann selbständig zu Nanopartikeln zusammen, wenn es abgekühlt wird. Die extrem kurzen DNA-Doppelstränge haben den Vorteil, dass eine relativ geringe Aktivierungsenergie benötigt wird, um fehlerhafte Strukturen wieder aufzubrechen.
„Dies ermöglicht einen dynamischen Auf- und Abbauprozess“, so Richert, der auch nach seinem kürzlichen Wechsel an die Universität Stuttgart das Projekt in Zusammenarbeit mit seinen Karlsruher Kollegen weiterführen wird. „Ein großer Vorteil dabei ist, dass wir mit rein synthetischem Material große Gitter erhalten können.“
Literatur:
Two Base Pair Duplexes Suffice to Build a Novel Material. M. Meng et al., ChemBioChem 2009, 10, 1335-1339.
Im Karlsruher Institut für Technologie (KIT) schließen sich das Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft und die Universität Karlsruhe zusammen. Damit wird eine Einrichtung international herausragender Forschung und Lehre in den Natur- und Ingenieurwissenschaften aufgebaut. Im KIT arbeiten insgesamt 8000 Beschäftigte mit einem jährlichen Budget von 700 Millionen Euro. Das KIT baut auf das Wissensdreieck Forschung – Lehre – Innovation.
Die Karlsruher Einrichtung ist ein führendes europäisches Energieforschungszentrum und spielt in den Nanowissenschaften eine weltweit sichtbare Rolle. KIT setzt neue Maßstäbe in der Lehre und Nachwuchsförderung und zieht Spitzenwissenschaftler aus aller Welt an. Zudem ist das KIT ein führender Innovationspartner für die Wirtschaft.
Media Contact
Weitere Informationen:
http://www.kit.eduAlle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Interstellares Methan als Aminosäure-Urahn?
Gammastrahlung setzt Methan zu Glycin und anderen komplexen Verbindungen um. Gammastrahlung kann Methan bei Raumtemperatur in eine Bandbreite verschiedener Produkte umsetzen, darunter Kohlenwasserstoffe, sauerstoffhaltige Verbindungen und Aminosäuren, wie ein Forschungsteam…
Neuer Mechanismus: Wie Krebszellen dem Immunsystem entwischen
Ein internationales Team unter Federführung der Goethe-Universität Frankfurt hat einen innerzellulären Sensor identifiziert, der die Qualität sogenannter MHC-I-Moleküle überwacht. MHC-I-Moleküle helfen dem Immunsystem, kranke Zellen – zum Beispiel Tumorzellen –…
Flexible Strahlformung-Plattform optimiert LPBF-Prozesse
Neuer Ansatz in der Strahlformung macht die additive Fertigung flexibler und effizienter: Das Fraunhofer ILT hat eine neue Plattform entwickelt, mit der Laser Powder Bed Fusion (LPBF) Prozesse individuell optimiert…