FAU-Wissenschaftler wollen in großem Stil Algen für die Wirtschaft nutzbar machen
Im industriellen Maßstab wollen die beiden Forscher gemeinsam mit der Firma E.ON Hanse einzellige Algen kultivieren, um daraus verschiedene Wertstoffe zu ziehen: von antiviralen und antibakteriellen Substanzen für den Einsatz in der Medizin über Farbstoffe und Biowerkstoffe bis hin zu Fettsäuren für flüssige Biotreibstoffe. Das Projekt wird sowohl am FAU-Standort Erlangen betrieben als auch auf dem Zweig-Campus der FAU im koreanischen Busan.
Sie haben so klangvolle Namen wie Dunaliella, Chlorella oder Spirunlina. Mikroskopische Bilder von Mikroalgen sind oft wunderschön. Als Wert- und Rohstofflieferanten aber sind sie vor allem deshalb so interessant, weil sie mit Hilfe ihrer Photosynthese das preiswerte Sonnenlicht als Energie nutzen können. Und: Sie enthalten erstaunlich viele begehrte und hochwertige Substanzen, die der Mensch für verschiedenste industrielle Anwendungen verwerten kann. Außerdem stellen sie wichtige Rohstoffe her, die als Alternativen zu aktuell genutzten endlichen Ressourcen dienen können.
Die Rede ist von einzelligen Algen, die schon seit etlichen Jahren die Phantasie der Biotechnologie beflügeln – als nachwachsende Rohstoffe für flüssige Treibstoffe zum Beispiel. Allerdings fehlten bislang häufig effiziente Verfahren, um die industrielle Nutzung von Algen wirtschaftlich zu machen. Am Lehrstuhl für Bioverfahrenstechnik an der FAU wollen Prof. Dr. Buchholz und seine Leute erste Anwendungen entwickeln und untersuchen, welche Möglichkeiten sich in diesem Zusammenhang ergeben.
Ziel des Projekts ist es, einen möglichst hohen Effizienzgrad bei der Auswertung der Algenbiomasse zu erzielen, ähnlich wie es in der Erdölraffinerie inzwischen zur Perfektion getrieben ist. Gleichzeitig sollen zu diesem Zweck neue Algen-Spezies identifiziert werden, die als Wert- und Rohstofflieferanten besonders geeignet sind.
Zunächst geht es den Wissenschaftlern darum, möglichst viele verschiedene Algen-Spezies zu kultivieren und im Hinblick auf ihre Verwertbarkeit unter die Lupe zu nehmen. „In einem Screening sehen wir uns ganz unterschiedliche Algenarten an – von marinen Algen über Süßwasseralgen“, erklärt Buchholz. Die Salzwasseralge Dunaliella salina zum Beispiel enthalte jede Menge Beta-Carotin und sei auch bei hohen Salzkonzentrationen kultivierbar. Andere Sorten wiederum liefern Fettsäuren, die für den Energiesektor von Bedeutung sind.
Dafür betrachten die Bioverfahrenstechniker vor allem im Freiland kultivierte Algen, deren Produktion relativ billig sein kann. Sie wollen auch untersuchen, ob man das Kohlendioxid aus Abgasen von Kraftwerken als Kohlenstoffquelle einsetzen kann – zum Beispiel in der Anlage, die Kooperationspartner E.on Hanse in Hamburg betreibt. Im Labor an seinem Erlanger Lehrstuhl dagegen hat Buchholz, der übrigens auch die Fachgruppe „Algenbiotechnologie“ bei der DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V. leitet, eine geschlossene Kultivierungsanlage für Mikroalgen aufgebaut, die mengenmäßig vom Glaskolben über Literanlagen bis hin zu 120-Liter-Reaktor alles bieten kann. Konzipiert für sterile Bedingungen, ist sie der Ort, aus dem die Forscher eher Wirkstoffe für medizinische Anwendungen extrahieren können.
Doch mit Untersuchungen in Deutschland wollen sich Buchholz und seine Kollegen nicht zufrieden geben: Das Projekt „Micro algae biorefinery“ ist als Kooperationsprojekt zwischen der FAU und ihrem koreanischen Ableger, dem FAU Campus Busan angelegt. Dort werden ebenfalls Chemie- und Bioingenieure an dem Screening mitarbeiten, Algen kultivieren und neue Spezies identifizieren, die bislang vielleicht noch gar nicht bekannt waren. Bei ersten Untersuchungen haben die Forscher auch schon „einige Vertreter entdeckt, die wir für sehr relevant erachten“, meint Buchholz. „Und wir hoffen, weitere interessante neue Kandidaten zu finden.“ Der Charme von Korea: Es hat, anders als Deutschland, eine große Küstenlinie – und damit jede Menge Platz für Anlagen, in denen die Algen gedeihen. Außerdem sei das Klima in Korea für den vergleichenden Blick interessant: Busan liegt etwa auf dem Breitengrad von Neapel. Buchholz möchte nun herausfinden, wie sich die unterschiedliche Sonnenintensität und Tageslichtdauer an den beiden Standorten auf das Wachstum der Algen auswirkt.
Sind schließlich geeignete Spezies gefunden, geht es darum, den größtmöglichen Nutzen aus der Alge zu ziehen – möglichst alle Bestandteile der Algen sollen optimal ausgewertet werden, um verschiedene Bedürfnisse der Industrie zu befriedigen. Dieses Projektziel verbirgt sich hinter dem Fachbegriff „Bioraffinerie“ und soll in enger Zusammenarbeit mit den Strömungsmechanikern der FAU geschehen: Prof. Delgado und sein Team wollen mittels strömungsmechanischer Berechnungen die Reaktoren so optimieren, dass selbst in dichten Kulturlösungen aus stark wachsenden Algen alle Einzeller genügend Licht bekommen. Solche Kulturflüssigkeiten sind schnell so undurchsichtig, dass Licht von außen nicht mehr sehr tief eindringen kann. Die meisten Algen können deshalb ohne geeignete Maßnahmen kaum noch Energie beziehen. Zugleich versuchen die Prozess-Experten, geeignete Verfahren in Reihe zu schalten, um die Alge in einem Bioraffinerieverfahren möglichst effizient zu nutzen, was den Gesamtprozess wirtschaftlich machen soll.
„Wir hoffen, im Lauf der kommenden drei Jahre schon erste Ergebnisse vorzeigen zu können, um zu demonstrieren, wie erfolgversprechend Algen für uns in Zukunft sein werden “, erklärt Buchholz.
Prof. Dr. Rainer Buchholz
Tel.: 09131/85-23003
rainer.buchholz@bvt.cbi.uni-erlangen.de
Media Contact
Weitere Informationen:
http://www.uni-erlangen.deAlle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Sensoren für „Ladezustand“ biologischer Zellen
Ein Team um den Pflanzenbiotechnologen Prof. Dr. Markus Schwarzländer von der Universität Münster und den Biochemiker Prof. Dr. Bruce Morgan von der Universität des Saarlandes hat Biosensoren entwickelt, mit denen…
Organoide, Innovation und Hoffnung
Transformation der Therapie von Bauchspeicheldrüsenkrebs. Bauchspeicheldrüsenkrebs (Pankreaskarzinom) bleibt eine der schwierigsten Krebsarten, die es zu behandeln gilt, was weltweite Bemühungen zur Erforschung neuer therapeutischer Ansätze anspornt. Eine solche bahnbrechende Initiative…
Leuchtende Zellkerne geben Schlüsselgene preis
Bonner Forscher zeigen, wie Gene, die für Krankheiten relevant sind, leichter identifiziert werden können. Die Identifizierung von Genen, die an der Entstehung von Krankheiten beteiligt sind, ist eine der großen…