Fliegenaugen: Nicht so starr wie gedacht

Fruchtfliegen benutzen zwei winzige Muskeln, um die Netzhäute im Inneren ihrer Facettenaugen zu bewegen. So können sie bewegte Objekte scharf sehen und Entfernungen wahrscheinlich besser einschätzen.
(c) Max-Planck-Institut für biologische Intelligenz (i.G.) / Anja Friedrich

Fruchtfliegen können die Netzhäute ihrer ansonsten starren Facettenaugen bewegen, um Objekten visuell zu folgen und Hindernisse erfolgreich zu überqueren.

Das haben Forschende am Max-Planck-Institut für biologische Intelligenz (in Gründung) und Kolleg*innen in den USA herausgefunden. Die Netzhautbewegungen erfolgen über zwei kleine Muskeln im Fliegenauge und ähneln stark denen des menschlichen Auges. Sie helfen den Insekten dabei, bewegte Objekte scharf zu sehen und könnten ihnen auch Informationen zur Entfernung nahegelegener Gegenstände liefern.

Unsere Augen sind in ständiger Bewegung – so nehmen wir unsere Umwelt scharf und möglichst vollständig wahr. Insekten und viele andere Gliedertiere besitzen jedoch starre Facettenaugen, die fest mit dem Kopf verbunden sind. Bisher wurde angenommen, dass sie ihr Blickfeld nur verändern können, indem sie den Kopf drehen oder ihren Körper bewegen. Eine neue Studie zeigt jedoch, dass diese Annahme relativiert werden muss.

„Wir haben herausgefunden, dass Fruchtfliegen zusätzlich zu Kopf- und Körperbewegungen eine weitere, völlig andere Methode zur Anpassung ihres visuellen Inputs nutzen“, erklärt Lisa Fenk vom Max-Planck-Institut für biologische Intelligenz. Die Lise-Meitner-Forschungsgruppenleiterin hat den Großteil der Forschung noch während ihrer Zeit im Labor von Gaby Maimon an der Rockefeller University in New York durchgeführt.

Lisa Fenk wollte herausfinden, welche Funktion die winzigen Muskeln haben, die bei Fruchtfliegen der Art Drosophila melanogaster mit den Netzhäuten verbunden sind. Auch andere Fliegenarten besitzen solche Muskeln. Welche Rolle sie beim Sehvorgang spielen, war allerdings bisher nicht bekannt.

Zusammen mit ihren Kolleg*innen konnte Lisa Fenk nun zeigen, dass die Muskeln die Netzhäute unter den starren Linsen der Facettenaugen bewegen können. Auf den Netzhäuten wird die Umgebung abgebildet und das einfallende Licht in Nervensignale umgewandelt. Durch die Muskelbewegungen verschiebt sich das Abbild der Umwelt, ohne dass die Fliege dafür ihren Kopf bewegen muss. Im Fliegenalltag bringt diese Fähigkeit gleich mehrere Vorteile.

Netzhäute in ständiger Bewegung

„Wir können unsere Augen hin- und herbewegen, um bewegte Objekte im Fokus zu behalten – das können Fliegen mit ihren starren Facettenaugen nicht“, sagt Lisa Fenk. „Die beweglichen Netzhäute der Fruchtfliegen sind ein genialer Einfall der Natur, trotz starrer Augen Bewegungen folgen zu können.“

Die Wissenschaftler*innen konnten die Netzhautbewegungen beobachten, als sie den Fruchtfliegen ein bewegtes Streifenmuster auf einem Display zeigten. Wenn das Streifenmuster links und rechts am Kopf der Fliege vorbeilief, bewegten sich die Netzhäute jeweils synchron mit der Streifenbewegung um das Bild zu stabilisieren. In unregelmäßigen Abständen sprangen die Netzhäute in ihre Ausgangspositionen zurück, so dass eine erneute Bewegung möglich wurde.

„Das Prinzip der Bildstabilisierung ähnelt stark der Methode, die auch das menschliche Auge nutzt – nur dass wir dazu sechs Muskeln benötigen und das ganze Auge bewegen. Es ist faszinierend, dass die Evolution bei diesen zwei völlig unterschiedlichen Augentypen ähnliche Strategien zur Bildstabilisierung hervorgebracht hat“, sagt Lisa Fenk.

Gut zu Fuß – dank Netzhautmuskeln

Aber nicht nur bei der Bildstabilisierung spielen die beweglichen Netzhäute eine wichtige Rolle. Wie die Forscher*innen zeigen konnten, sind sie auch bei der Fortbewegung hilfreich. Wenn Fruchtfliegen bei ihren Spaziergängen auf eine Spalte im Untergrund treffen, müssen sie entscheiden, ob sie direkt hinübersteigen, oder ob sie lieber einen Umweg nehmen. (Hinüberfliegen wäre eine weitere Option, kostet aber mehr Energie.) Für diese Entscheidung muss die Fliege den Abstand richtig einschätzen – hier ist also räumliches Sehen erforderlich.

Mithilfe eines eigens für Fruchtfliegen entwickelten „Laufrads“ konnten die Wissenschaftler*innen untersuchen, ob die Bewegung der Netzhäute beim Überqueren von Spalten helfen könnte. Sie ließen die Fruchtfliegen auf einem drehbaren Rad mit kleinen Spalten laufen und beobachteten dabei die Bewegung der Netzhäute. Sobald die Fliegen an einer Spalte ankamen, bewegten sich die Netzhäute beider Augen stets aufeinander zu – ein wichtiger Vorgang, wie sich zeigte.

„Wir konnte beobachten, dass Fliegen mit abgeschwächten Netzhautbewegungen die Spalten im Laufrad weniger effizient überquerten“, erklärt Lisa Fenk. „Wenn sie ihre Netzhäute nicht richtig bewegen können, haben die Fruchtfliegen offensichtlich Schwierigkeiten, Spalten im Untergrund richtig einzuschätzen.“ Die Netzhautbewegungen scheinen daher auch für das räumliche Sehen wichtig zu sein.

Den Sehvorgang verstehen

Als nächstes möchte Lisa Fenk mit ihrem Team untersuchen, wie Fliegen die Nervensignale verarbeiten, die von den bewegten Netzhäuten an das Gehirn weitergegeben werden. Dabei muss das Fliegengehirn unterscheiden, ob eine visuelle Bewegung aus den Netzhautbewegungen resultiert, oder aus tatsächlichen Bewegungen in der Umwelt. Die Forschenden wollen nun an den beteiligten Nervenzellen untersuchen, wie das Fliegenhirn diese Herausforderung meistert. „Wir hoffen, dadurch zu erfahren, welche Vorteile die Netzhautbewegungen den Fliegen für die visuelle Wahrnehmung bringen. So können wir vielleicht auch unseren eigenen Sehvorgang besser verstehen“, fasst Lisa Fenk zusammen.

Wissenschaftliche Ansprechpartner:

Dr. Lisa Fenk
Lise-Meitner-Forschungsgruppenleiterin
Max-Planck-Institut für biologische Intelligenz, in Gründung
E-Mail: lisa.fenk@bi.mpg.de

Originalpublikation:

Lisa M. Fenk, Sofia C. Avritzer*, Jazz L. Weisman*, Aditya Nair, Lucas D. Randt, Thomas L. Mohren, Igor Siwanowicz and Gaby Maimon

Muscles that move the retina augment compound-eye vision in Drosophila

Nature, published online 26 October 2022
DOI: 10.1038/s41586-022-05317-5

* equal contribution

Weitere Informationen:

https://www.bi.mpg.de/fenk/de – Webseite der Forschungsgruppe

Media Contact

Dr. Stefanie Merker Kommunikation (PR)
Max-Planck-Institut für biologische Intelligenz (in Gründung)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen

An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser…

Tsunami-Frühwarnsystem im Indischen Ozean

20 Jahre nach der Tsunami-Katastrophe… Dank des unter Federführung des GFZ von 2005 bis 2008 entwickelten Frühwarnsystems GITEWS ist heute nicht nur der Indische Ozean besser auf solche Naturgefahren vorbereitet….

Resistente Bakterien in der Ostsee

Greifswalder Publikation in npj Clean Water. Ein Forschungsteam des Helmholtz-Instituts für One Health (HIOH) hat die Verbreitung und Eigenschaften von antibiotikaresistenten Bakterien in der Ostsee untersucht. Die Ergebnisse ihrer Arbeit…