Forschung mit Neutronen für bessere mRNA-Medikamente

Schematische Darstellung der Verabreichung eines mRNA-Therapeutikums und der Prozesse im Zellinneren.
AstraZeneca. Nigel Davies et al.; Molecular Therapy: Nucleic Acid, DOI: 10.1016/j.omtn.2021.03.008 (CC BY-NC-ND 4.0)

Spätestens, seit die ersten mRNA-Impfstoffe gegen das SARS CoV2-Virus in Deutschland zugelassen sind, ist der Begriff mRNA auch über Fachkreise hinaus bekannt. Weniger bekannt ist, dass sich mit Hilfe der „Boten-RNA“ nicht nur Impfstoffe herstellen lassen. Rund 50 Verfahren zur Behandlung von Krankheiten, darunter Krebserkrankungen, werden bereits in klinischen Studien untersucht. Forschende des Pharma-Unternehmens AstraZeneca haben nun mit Unterstützung von Neutronenforschern des Forschungszentrums Jülich herausgefunden, wie sich die subkutane Verabreichung von mRNA verbessern lässt. Ziel ist, dass chronisch kranke Patienten sich den Wirkstoff regelmäßig selbstständig verabreichen können.

Dr. Aurel Radulescu am KWS-2-Instrument in der Neutronenleiterhalle der Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II) in Garching.
Wenzel Schürmann / TUM

mRNA dient in unseren Zellen als Blaupause für die Produktion von Eiweißmolekülen. mRNA-Medikamente könnten deshalb Proteine direkt im Körper des Patienten entstehen lassen, gezielt an der Stelle, wo sie benötigt werden. Neben Krebsleiden sind viele weitere Krankheiten potentiell behandelbar: Bluterkranke etwa, bei denen die Produktion eines Gerinnungsfaktors gestört ist, können durch Verabreichung der Blaupause für eben diesen Faktor therapiert werden. Nach Herzinfarkten oder Schlaganfällen könnte injizierte mRNA die Bildung von Proteinen ermöglichen, die neue Blutgefäße wachsen lassen.

Im Vergleich zu den derzeitigen Therapeutika ist die Produktion von mRNA schneller und flexibler möglich, da mRNA leicht hergestellt werden kann und der Prozess unabhängig von der mRNA-Sequenz ist. Darüber hinaus ermöglicht die Technologie, schnell personalisierte Medikamente zu entwickeln, und Proteine im Körper über einen längeren Zeitraum und mit ansonsten schwer zu realisierenden Modifikationen herzustellen.

mRNA wird im Körper rasch von allgegenwärtigen Enzymen abgebaut. Es gilt zu verhindern, dass dies passiert, bevor die mRNA die Zellen erreicht, in denen die Proteinsynthese stattfindet. Zudem muss sichergestellt sein, dass der Botenstoff in die richtigen Zellen gelangt und dies in ausreichender Menge. Auch wenn es Verfahren gibt, bei denen die „nackte“ mRNA verabreicht wird, sind eine sichere Verpackung und eine Art Adressaufkleber weitaus effizienter.

Ein fortschrittliches Verpackungssystem sind so genannte Lipid-Nanopartikel (LNP), winzige Bläschen aus einer Mischung unterschiedlicher fettartiger Substanzen. Jede von ihnen erfüllt eine spezielle Aufgabe, etwa die Stabilisierung des Konstrukts oder die Auslieferung in die Zelle.

Bei intravenöser oder intramuskulärer Verabreichung erfüllen die LNP ihre Zwecke bereits ausreichend gut. Unter die Haut verabreicht lösen die LNP jedoch eine signifikante Entzündung aus. Diese subkutane Anwendung wäre Voraussetzung, dass Patienten sich selbst das Medikament spritzen könnten, so wie Diabetes-Patienten es mit Insulin können. Vor allem für chronische Krankheiten, bei denen regelmäßige Gaben des Medikaments nötig sind, wäre das von Vorteil.

Bisher können jedoch nur geringe, unzureichende Mengen sicher subkutan injiziert werden. Wie sich das Problem lösen lässt, zeigen die aktuellen Untersuchungen der Forscher von AstraZeneca und vom Jülich Centre for Neutron Science (JCNS). Die Forscher ergänzten dabei die mRNA-Verpackungen um Vorstufen von entzündungshemmenden Substanzen aus der Klasse der Steroide. Körpereigene Enzyme können diese Vorstufen an Ort und Stelle der Injektion in wirksame Steroide umwandeln.

Steroide wirken stark entzündungshemmend, können jedoch erhebliche Nebenwirkungen haben, vor allem bei regelmäßiger Einnahme. Diese Nebenwirkungen können minimiert werden, indem ein Steroid-Vorläufer in das LNP eingebaut wird, so dass er nur an der Stelle abgegeben und aktiviert wird, an der er benötigt wird, d. h. an der Stelle, an der die LNPs injiziert werden.

Jedoch muss dabei sichergestellt werden, dass die Steroid-Vorstufen für die Enzyme zugänglich sind. Deshalb müssen sie im Außenbereich der Lipid-Nanopartikel lokalisiert sein. Dies versuchten die Forscher zu gewährleisten, indem sie den Wirkstoffen kürzere oder längere fettliebende Fortsätze anbauten. Die fettliebenden Bereiche, so die Idee, sollten sich so zwischen die fettigen Substanzen der LNP-Hüllschicht einlagern, dass die Steroid-Vorstufen an der Außenseite zu liegen kommen. Dass dies tatsächlich der Fall ist, wiesen die Forscher mit Hilfe von Neutronenstreuuntersuchungen am Kleinwinkelstreuinstrument KWS-2 nach, das das JCNS an seiner Außenstelle am Heinz Maier-Leibnitz Zentrum in Garching betreibt.

„An der KWS-2 lassen sich feine Strukturen bis hin zu Nanostrukturen mit einem speziellen Anfärbeverfahren untersuchen“, erläutert der JCNS-Instrumentwissenschaftler Dr. Aurel Radulescu. „Dabei werden Wasserstoffatome einzelner Komponenten gegen schweren Wasserstoff ausgetauscht. Die physikalische Chemie der Probe ändert dies nicht, wohl aber die Sichtbarkeit für die Neutronen. Die Neutronen können die beiden Isotope voneinander unterscheiden und so erkennen, welche Wasserstoffatome zu welchem Molekül gehören.“ So lassen sich die verschiedenen Bestandteile der Lipid-Nanopartikel gezielt anfärben und voneinander unterscheiden. Und tatsächlich fanden die Forscher die Steroid-Vorstufen außen an den Partikeln, zumindest bei längeren Fortsätzen.

„Das Verständnis, wie die LNP-Oberfläche aussieht, ist von grundlegender Bedeutung auch für weitere Fragen, die die LNP-Entwicklung betreffen“, ergänzt Dr. Marianna Yanez Arteta, leitende Wissenschaftlerin im Bereich „Advanced Drug Delivery“ bei AstraZeneca. „Neutronenstreuung in Kombination mit selektivem Isotopenkontrast ist meines Wissens die einzige verfügbare Technik, mit der wir die Lipidverteilung untersuchen und die Oberfläche auflösen können.“

Weitere Studien im Labor von AstraZeneca bestätigten die entzündungshemmende Wirkung der neuen LNP-Varianten. Die Forscher untersuchten dabei auch, welche Länge des fettliebenden Stiels ein optimales Verhältnis zwischen Effizienz der mRNA-Auslieferung und Entzündungsreaktion gewährleistet. „Der Einbau einer entzündungshemmenden Komponente in die LNP vereinfacht die Therapie erheblich und kann sie für andere Indikationen öffnen“, prognostiziert Dr. Yanez Arteta. Wenn sich die entzündungshemmenden LNP nun auch beim Einsatz am Menschen bewähren, sollten sie also neue Therapiemöglichkeiten für eine Vielzahl von Krankheiten ermöglichen.

Wissenschaftliche Ansprechpartner:

Dr. Aurel Radulescu
Jülich Centre for Neutron Science (JCNS-FRM-II)
Forschungszentrum Jülich
Tel. 089 289-10712
E-Mail: a.radulescu@fz-juelich.de

Dr. Marianna Yanez Arteta, Associate Principal Scientist
Pharmaceutical Sciences, R&D, AstraZeneca, Göteborg, Schweden
E-Mail: mariann.yanezarteta@astrazeneca.com

Originalpublikation:

Original-Publikationen:
Functionalized lipid nanoparticles for subcutaneous administration of mRNA to achieve systemic exposures of a therapeutic protein;
Nigel Davies et al.;
Molecular Therapy: Nucleic Acid Volume 24, 4 June 2021, Pages 369-384,
DOI: 10.1016/j.omtn.2021.03.008

Successful reprogramming of cellular protein production through mRNA delivered by functionalized lipid nanoparticles;
M. Yanez Arteta et al.;
Proc. Natl. Acad. Sci. USA, 115 (2018), pp. E3351-E3360,
DOI: 10.1073/pnas.1720542115

Weitere Informationen:

https://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2021/2021-05-03-be… Pressemitteilung des Forschungszentrums Jülich

Media Contact

Dipl.-Biologin Annette Stettien Unternehmenskommunikation
Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Sensoren für „Ladezustand“ biologischer Zellen

Ein Team um den Pflanzenbiotechnologen Prof. Dr. Markus Schwarzländer von der Universität Münster und den Biochemiker Prof. Dr. Bruce Morgan von der Universität des Saarlandes hat Biosensoren entwickelt, mit denen…

3D-Tumormodelle für Bauchspeicheldrüsenkrebsforschung an der Universität Halle

Organoide, Innovation und Hoffnung

Transformation der Therapie von Bauchspeicheldrüsenkrebs. Bauchspeicheldrüsenkrebs (Pankreaskarzinom) bleibt eine der schwierigsten Krebsarten, die es zu behandeln gilt, was weltweite Bemühungen zur Erforschung neuer therapeutischer Ansätze anspornt. Eine solche bahnbrechende Initiative…

Leuchtende Zellkerne geben Schlüsselgene preis

Bonner Forscher zeigen, wie Gene, die für Krankheiten relevant sind, leichter identifiziert werden können. Die Identifizierung von Genen, die an der Entstehung von Krankheiten beteiligt sind, ist eine der großen…