Forschungsteam entschlüsselt Grundprinzip der Enzymkatalyse

Struktureller Schnappschuss der enzymatischen Reaktion im humanen Enzym Orotidin-5‘-phosphat Decarboxylase. Die beiden negativen Ladungen des Substrats und Enzyms stoßen sich nicht ab, sondern gehen eine attraktive Wechselwirkung ein.
(c) Kai Tittmann

Aus der Physik und Chemie ist allgemein bekannt, dass sich gleiche Ladungen gegenseitig abstoßen, während sich entgegengesetzte Ladungen anziehen. Man nahm lange Zeit an, dass dieses Prinzip auch gilt, wenn Enzyme – die biologischen Katalysatoren in allen lebenden Organismen – chemische Bindungen neu bilden oder aufbrechen. Daher wurde vermutet, dass Enzyme in ihren so genannten aktiven Zentren – also da, wo die chemischen Reaktionen tatsächlich stattfinden – Ladungen in einer derartigen Weise platzieren, dass diese gleichartige Ladungen auf den Substratmolekülen abstoßen. Dieses Konzept wird als „elektrostatischer Stress“ bezeichnet.

Trägt das Substrat beispielsweise eine negative Ladung, könnte das Enzym eine negative Ladung nutzen, um das Substrat zu „stressen“ und so die Reaktion zu erleichtern. Eine Studie der Universität Göttingen und des Max-Planck-Instituts für Multidisziplinäre Naturwissenschaften in Göttingen hat nun unerwarteterweise gezeigt, dass zwei gleiche Ladungen nicht zwangsläufig zu einer Abstoßung führen, sondern eine Anziehung in Enzymen bewirken können. Die Ergebnisse sind in der Fachzeitschrift Nature Catalysis erschienen.

Das Team studierte ein Enzym, das ein bekanntes und intensiv untersuchtes Lehrbuchbeispiel für Enzymkatalyse ist. Ohne das Enzym ist die Reaktion extrem langsam und läuft mit einer Halbwertszeit von 78 Millionen Jahren ab. Das Enzym beschleunigt die Reaktion um den beeindruckenden Faktor 1017, und zwar allein durch Positionierung von negativen und positiven Ladungen im aktiven Zentrum. Da das Substrat eine negativ geladene Gruppe enthält, die als Kohlendioxid abgespalten wird, war man jahrzehntelang davon ausgegangen, dass die negativen Ladungen des Enzyms das ebenfalls geladene Substrat stressen und die Reaktion beschleunigen würden. Dieser mechanistische Vorschlag blieb jedoch nur hypothetischer Natur, da die Reaktion zu schnell war, um strukturell beobachtet zu werden.

Der Gruppe von Prof. Dr. Kai Tittmann vom Göttinger Zentrum für Molekulare Biowissenschaften (GZMB) gelang es nun erstmals, mit Hilfe der Proteinkristallografie einen strukturellen Schnappschuss des Substrats kurz vor der chemischen Reaktion zu erhalten. Entgegen den Erwartungen stießen sich die negativen Ladungen von Enzym und Substrat nicht gegenseitig ab. Stattdessen teilten sie sich ein Proton als molekularen Klebstoff in einer attraktiven Wechselwirkung. „Die Frage, ob zwei gleiche Ladungen im Kontext der Enzymkatalyse Freunde oder Feinde sind, wird in unserem Fachgebiet seit langem kontrovers diskutiert, und unsere Studie zeigt, dass die grundlegenden Prinzipien der Funktionsweise von Enzymen noch lange nicht verstanden sind“, so Tittmann. Die kristallografischen Strukturen wurden anschließend von dem Quantenchemiker Prof. Dr. Ricardo Mata und seinem Team vom Institut für Physikalische Chemie analysiert. „Das zusätzliche Proton zwischen den beiden negativen Ladungen wird nicht nur dazu verwendet, das Substrat anzuziehen, sondern es löst eine Kaskade von Protonentransferreaktionen aus, die die Reaktion weiter beschleunigen“, erklärt Mata.

„Wir glauben, dass die entschlüsselten Prinzipien der Enzymkatalyse bei der Entwicklung von neuen chemischen Katalysatoren helfen werden“, sagt Tittmann. „Da das von uns untersuchte Enzym Kohlendioxid freisetzt, das wichtigste Treibhausgas, das durch menschliche Aktivitäten entsteht, könnten unsere Ergebnisse dazu beitragen, neue chemische Strategien für die Kohlendioxidbindung zu entwickeln.“

An der Studie waren Wissenschaftlerinnen und Wissenschaftler des Göttinger Zentrums für Molekulare Biowissenschaften (GZMB), der Fakultäten für Biologie und Psychologie sowie der Chemie der Universität Göttingen, des Max-Planck-Instituts für Multidisziplinäre Naturwissenschaften, des Europäischen Molekularbiologischen Labors (EMBL) Hamburg und der Universität von Toronto beteiligt. Die Publikation ist dem Andenken an den Mitautor Prof. Dr. Ulf Diederichsen gewidmet, der im vergangenen Jahr verstarb.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Kai Tittmann
Georg-August-Universität Göttingen
Abteilung für Molekulare Enzymologie
Julia-Lermontowa-Weg 3, 37077 Göttingen
Telefon: (0551) 39-177811
E-Mail: ktittma@gwdg.de
www.uni-goettingen.de/en/sh/198266.html

Prof. Dr. Ricardo Mata
Universität Göttingen
Institut für Physikalische Chemie
Tammannstraße 6, 37077 Göttingen
Telefon: (0551) 39-23149
E-Mail: rmata@gwdg.de
www.uni-goettingen.de/en/people/123989.html

Originalpublikation:

Sören Rindfleisch et al. Ground-state destabilization by electrostatic repulsion is not a driving force in orotidine-5′-monophosphate decarboxylase catalysis. Nature Catalysis 2022. https://doi.org/10.1038/s41929-022-00771-w

http://www.uni-goettingen.de/

Media Contact

Thomas Richter Öffentlichkeitsarbeit
Georg-August-Universität Göttingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Muster mikrobieller Evolution im See Mendota, analysiert mit Metagenom-Daten und saisonalen Einblicken.

Ein endloser Kreislauf: Wie sich einige Bakterien mit den Jahreszeiten entwickeln

Die längste jemals gesammelte natürliche Metagenom-Zeitreihe mit Mikroben offenbart ein verblüffendes evolutionäres Muster, das sich wiederholt. Ein mikrobielles „Murmeltiertagsjahr“ im Lake Mendota Ähnlich wie Bill Murray im Film „Und täglich…

Mueller-Matrix-Polarimetrie-Technik zur Bewertung der Achillessehnenheilung.

Entdecken Sie bahnbrechende Forschung zur Regeneration der Achillessehne

Achillessehnenverletzungen sind häufig, aber aufgrund der Einschränkungen aktueller Bildgebungstechniken schwer während der Genesung zu überwachen. Forschende unter der Leitung von Associate Professor Zeng Nan von der International Graduate School in…

Echtzeit-Genetische Sequenzierung zur Überwachung neuer Pathogene und Infektionsvarianten

Warum Prävention besser ist als Heilung – Ein neuartiger Ansatz für den Umgang mit Infektionskrankheiten

Forscher haben eine neue Methode entwickelt, um ansteckendere Varianten von Viren oder Bakterien zu identifizieren, die sich unter Menschen auszubreiten beginnen – darunter Erreger von Grippe, COVID, Keuchhusten und Tuberkulose….