Für ein sicheres, sauberes Nass – Magnetische Nanopartikel mit ionischen Flüssigkeiten für die Wasseraufbereitung

Nanopartikel, die mit einer "ionischen Flüssigkeit" beschichtet sind, binden Kontaminationen wie Schwermetalle im Trinkwasser. Beladene Partikel lassen sich mit einem Magneten entfernen. (c) Wiley-VCH

Für ihren alternativen Ansatz verwenden die Forscher von der Universität Ulm, dem Helmholtz-Institut Ulm und der CISC-Universidad de Zaragoza (Spanien) um Carsten Streb, Robert Güttel und Scott G. Mitchell Nanopartikel mit einem Kern aus magnetischem Eisenoxid und einer Schale aus porösem Siliziumdioxid.

Auf ihrer Oberfläche wird eine Schicht einer sogenannten ionischen Flüssigkeit fest aufgebracht. Eine ionische Flüssigkeit ist ein Salz, das bereits bei Raumtemperatur geschmolzen vorliegt, also flüssig ist, ohne in einem Lösungsmittel gelöst zu sein.

Die verwendete ionische Flüssigkeit basiert auf Polyoxometallaten (POM) – Metallatomen, die über Sauerstoffatome zu einem dreidimensionalen Netzwerk verbrückt sind. Als Metall wählten die Forscher Wolfram, denn die entstehenden Polyoxowolframat-Anionen können Schwermetallionen binden. Als Gegenionen dienen voluminöse Tetraalkylammonium-Kationen mit antimikrobiellen Eigenschaften.

Die entstehenden ionischen Flüssigkeiten bilden stabile dünne Schichten („geträgerte ionische Flüssigphasen“) auf dem porösen Siliziumdioxid-Mantel der Nanopartikel. Die mit Kontaminationen beladenen Nanopartikel lassen sich dann auf einfache Weise durch einen Magneten aus dem Wasser entfernen.

Bei Labortests entfernten die Nanopartikel zuverlässig Blei-, Nickel-, Kupfer-, Chrom- und Kobaltionen sowie den Farbstoff Patentblau V als Modellsubstanz für aromatische Verunreinigungen.

Ebenso wurde das Wachstum verschiedener Bakterienarten effektiv gestoppt. Die Nanopartikel lagerten sich zudem an die Oberfläche von 1 µm bzw. 10 µm großen Polystyrolkügelchen – ein Modell für Mikroplastik – an, die sich auf diese Weise quantitativ entfernen ließen.

Durch ein weiteres Justieren der einzelnen Bestandteile könnte das Verbundmaterial weiter optimiert werden und die magnetischen Nanopartikel zu einem vielversprechenden Ausgangspunkt für zentrale und dezentrale Wasseraufbereitungssysteme machen. So würde eine einfache Reinigung größerer Wassermengen auch ohne umfangreiche Infrastruktur möglich.

Angewandte Chemie: Presseinfo 30/2019

Autor: Carsten Streb, Universität Ulm (Germany), http://www.strebgroup.net/

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany

https://doi.org/10.1002/ange.201912111

https://presse.angewandte.de

Media Contact

Dr. Karin J. Schmitz Gesellschaft Deutscher Chemiker e.V.

Weitere Informationen:

https://www.gdch.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Darstellung multiferrischer Heterostrukturen für energieeffizientes MRAM mit riesigem magnetoelektrischem Effekt.

Magnetischer Speicher mit energieeffizientem MRAM freigeschaltet

Forscher der Universität Osaka stellen innovative Technologie zur Senkung des Energieverbrauchs moderner Speichervorrichtungen vor. Fortschritt in der Speichertechnologie: Überwindung der Grenzen traditioneller RAM Osaka, Japan – In den letzten Jahren…

Framework zur Automatisierung von RBAC-Konformitätsprüfungen mithilfe von Prozessmodellierung und Richtlinienvalidierungswerkzeugen.

Next-Level System-Sicherheit: Intelligenterer Zugriffsschutz für Organisationen

Fortschrittliches Framework zur Verbesserung der System-Sicherheit Forschende der University of Electro-Communications haben ein bahnbrechendes Framework zur Verbesserung der System-Sicherheit durch die Analyse von Geschäftsprozessprotokollen entwickelt. Dieses Framework konzentriert sich darauf,…

Tiefseesedimentkern zeigt mikrobielle Karbonatbildung an Methanquellen.

Wie mikrobielles Leben die Kalkbildung im tiefen Ozean beeinflusst

Mikroorganismen sind überall und beeinflussen die Umwelt der Erde seit über 3,5 Milliarden Jahren. Forschende aus Deutschland, Österreich und Taiwan haben nun erstmals die Rolle entschlüsselt, die Mikroorganismen bei der…