Gegenverkehr im Rückenmark
Wissenschaftler des Max-Planck-Instituts für Neurobiologie in Martinsried bei München haben nun mit Kollegen aus den USA einen neuen Nervenzelltyp in Mäusen beschrieben, der Einblick in diese entwicklungsbiologische Frage gibt.
Die Fortsätze dieser Zellen wachsen während der Embryonalentwicklung vom Rückenmark ins Gehirn. Sie fungieren als Wegbereiter für andere Nervenzellen, die erst nach der Geburt aus dem Gehirn ins Rückenmark wachsen und willkürliche Bewegungen steuern.
Greifen wir mit der Hand gezielt nach einem Objekt oder stecken den Fuß in einen Stiefel, so koordiniert und kontrolliert das Gehirn diese Bewegungen. Damit dies möglich ist, muss es eine Nervenbahn geben, über die Anweisungen vom Gehirn zum Beispiel zum Fuß geschickt und umgekehrt auch Reize aus der Fuß-Umgebung an das Gehirn geleitet werden.
Solche Nervenbahnen entstehen, wenn die Fortsätze (Axone) von Nervenzellen während der Entwicklung auswachsen. Je nach Organismus und zu bewegendem Körperteil können die Axone dabei viele Zentimeter lang werden.
Wie sie dabei ihren Weg durch den Körper finden, und welche Moleküle bei der Wegfindung eine Rolle spielen, das untersuchen Rüdiger Klein und sein Team am Max-Planck-Institut für Neurobiologie. Im Fokus der Wissenschaftler stehen besonders die Ephrin- Signalmoleküle und ihre Bindungspartner, die Eph-Rezeptoren. Ephrine und Eph-Rezeptoren befinden sich unter anderem auf der Oberfläche von Nervenzellen und helfen den wachsenden Zellen, ihren Weg und ihre Partnerzellen zu finden.
Gegenverkehr mit Leitsystem
Ephrine und Eph-Rezeptoren sind wesentlich am Aufbau der neuronalen Netze beteiligt, die unsere Bewegungsabläufe steuern. Das fanden Rüdiger Klein und sein Team bereits vor längerer Zeit an ihrem Studienobjekt, der Maus, heraus.
Die Neurobiologen konnten zeigen, dass das Ephrin/Eph-System Nervenzellen leitet, die ihre Axone nach der Geburt vom Gehirn ins Rückenmark schicken und willkürliche Bewegungen von Beinen und Armen lenken. Bei der Untersuchung von Axonen, die in die entgegengesetzte Richtung verlaufen, also vom Rückenmark ins Gehirn, stießen die Forscher nun auf einen neuen Zelltyp, der ebenfalls Eph-Rezeptoren enthielt. „Genau dort, wo die „absteigenden“ Axone wuchsen, verliefen parallel dazu auch die „aufsteigenden“ Axone“, berichtet Rüdiger Klein. „Da haben wir uns natürlich gefragt, wie dieses parallele Wachstum in der Entwicklung gesteuert wird.“
Die darauf folgenden Untersuchungen der Neurobiologen zeigten Erstaunliches: Im Gegensatz zu den bekannten Zellen wuchsen die aufsteigenden Axone des neuen Zelltyps nicht erst nach der Geburt, sondern bereits während der Embryonalentwicklung aus. Zudem wurde ihr Wachstum vom gleichen Ephrin/Eph-Signalsystem geleitet, wie das der absteigenden Axone. „Es sieht so aus, als würden die aufsteigenden Axone während der Embryonalentwicklung sozusagen einen Kanal „vorbohren“, für die erst nach der Geburt auswachsenden, absteigenden Axone“, erklärt Rüdiger Klein.
Mögliches Feedbacksystem
Die weiteren Untersuchungen der neuen, aufsteigenden Nervenzellen legen nahe, dass sie ihren Input von berührungsempfindlichen Zellen erhalten. Es könnte sich daher hier um ein neues Feedback-System handeln: Willkürliche Bewegungen werden durch Signale von berührungsempfindlichen Zellen verfeinert, und so die beabsichtigte Bewegung der Umgebung angepasst – der Fuß rutscht in den Stiefel. „Was uns erstaunt hat, ist die Tatsache, dass ein und dasselbe Leitsystem die absteigenden und auch die aufsteigenden Axone lenkt“, so Klein. „Es ist ein sehr schönes Beispiel dafür, wie mit dem flexiblen Einsatz einzelner Moleküle und somit mit wenigen Genen, ein hochkomplexes Nervensystem aufgebaut werden kann.“ Ob es sich tatsächlich um das vermutete Feedback-System handelt, die auf- und absteigenden Zellen also über Synapsen verbunden sind, das wollen die Wissenschaftler als nächstes herausfinden. Schritt für Schritt wollen sie so die entwicklungsbiologischen Vorgänge entschlüsseln, durch die das Gehirn Bewegungsabläufe koordinieren und steuern kann.
Originalpublikation
Sónia Paixão, Aarathi Balijepalli, Najet Serradj, Jingwen Niu, Wenqui Luo, John H. Martin, Rüdiger Klein
EphrinB3/EphA4-mediated guidance of ascending and descending spinal tracts
Neuron, 18. Dezember 2013
Kontakt
Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 – 3514
E-Mail: merker@neuro.mpg.de
www.neuro.mpg.de
Prof. Dr. Rüdiger Klein
Abteilung Moleküle – Signale – Entwicklung
Max-Planck-Institut für Neurobiologie, Martinsried
Email: rklein@neuro.mpg.de
http://www.neuro.mpg.de/klein/de – Webseite von Rüdiger Klein
Media Contact
Weitere Informationen:
http://www.neuro.mpg.deAlle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Parallele Pfade: Das Verständnis von Malariaresistenz bei Schimpansen und Menschen
Die nächsten Verwandten des Menschen passen sich genetisch an Lebensräume und Infektionen an Überleben des am besten Angepassten: Genetische Anpassungen bei Schimpansen aufgedeckt Görlitz, 10.01.2025. Schimpansen verfügen über genetische Anpassungen,…
Du bist, was du isst – Stanford-Studie verbindet Ballaststoffe mit Modulation von Anti-Krebs-Genen
Die Ballaststofflücke: Ein wachsendes Problem in der amerikanischen Ernährung Ballaststoffe sind bekanntlich ein wichtiger Bestandteil einer gesunden Ernährung, doch weniger als 10 % der Amerikaner konsumieren die empfohlene Mindestmenge. Eine…
Vertrauen Sie Ihrem Bauchgefühl – RNA-Protein-Entdeckung für eine bessere Immunität
HIRI-Forscher entschlüsseln Kontrollmechanismen der Polysaccharidverwertung in Bacteroides thetaiotaomicron. Forschende des Helmholtz-Instituts für RNA-basierte Infektionsforschung (HIRI) und der Julius-Maximilians-Universität (JMU) Würzburg haben ein Protein sowie eine Gruppe kleiner Ribonukleinsäuren (sRNAs) in…