„Hightech“-Materialien aus der Natur

Mikroskopiebilder von biologischen Zellen: rechts oben (grün): Vimentin-Intermediärfilamente in Fibroblasten, links unten (rot): Keratin-Intermediärfilamente in Epithelzellen. Maßstab: 10 µm.
(c) Ulrike Rölleke (rechts oben, grün), Ruth Meyer (links unten, rot)/Universität Göttingen

Forschungsteam der Universität Göttingen entdeckt überraschende Eigenschaften des Zellskeletts.

Die meisten biologischen Zellen haben einen festen Platz im Organismus. Zellen können aber auch in einen beweglichen Zustand wechseln und durch den Körper wandern. Das passiert zum Beispiel bei der Wundheilung und wenn Tumore Metastasen bilden. Bewegliche und stationäre Zellen unterscheiden sich unter anderem in ihrem Zellskelett. Diese Struktur aus Proteinfilamenten macht die Zellen stabil, dehnbar und widerstandsfähig gegen äußere Kräfte.

Hier spielen sogenannte Intermediärfilamente eine wichtige Rolle. Davon findet man interessanterweise in beweglichen und stationären Zellen zwei verschiedene Typen. Forschenden der Universität Göttingen und der ETH Zürich ist es gelungen, die beiden Filamente mechanisch genau zu charakterisieren. Dabei entdeckten sie Parallelen zu nicht-biologischen Materialien. Die Ergebnisse sind in der Fachzeitschrift Matter erschienen.

Die Wissenschaftlerinnen und Wissenschaftler untersuchten mit optischen Pinzetten, wie sich die Filamente aus den Proteinen Vimentin und Keratin unter Zug verhalten. Sie befestigten die Enden der Filamente an kleinen Kunststoffkugeln, die sie dann mithilfe von Licht gezielt bewegten. So wurden die Filamente gestreckt. Die Forschenden bestimmten, welche Kräfte für die Streckung nötig waren und wie sich die Filamente verhielten, wenn sie mehrmals gestreckt wurden.

Erstaunlicherweise verhalten sich die beiden verschiedenen Filamente bei wiederholter Streckung gegensätzlich: Vimentin-Filamente werden weicher und behalten ihre Länge, Keratin-Filamente werden länger und behalten ihre Steifigkeit. Die experimentellen Ergebnisse lassen sich mit Computersimulationen auf molekulare Wechselwirkungen zurückführen: Bei Vimentin-Filamenten gehen die Forschenden davon aus, dass sich Strukturen öffnen, ähnlich wie in Gelen aus mehreren Komponenten. In Keratin-Filamenten vermuten sie, dass sich Strukturen gegeneinander verschieben, wie bei Metallen. Beide Mechanismen erklären, dass sich die Netzwerke der Intermediärfilamente im Zellskelett sehr stark verformen lassen, ohne Schaden zu nehmen – allerdings basierend auf grundlegend unterschiedlicher Physik.

„Die Ergebnisse erweitern unser Verständnis dafür, warum verschiedene Zellentypen so unterschiedliche mechanische Eigenschaften haben“, erklärt Dr. Charlotta Lorenz, Erstautorin der Studie. Prof. Dr. Sarah Köster vom Institut für Röntgenphysik, Leiterin der Studie, ergänzt: „Wir können von der Natur lernen und über das Design neuer, nachhaltiger und schaltbarer Materialien nachdenken, deren Eigenschaften genau zu den Anforderungen passen.“

Wissenschaftliche Ansprechpartner:

Prof. Dr. Sarah Köster
Georg-August-Universität Göttingen
Institut für Röntgenphysik
Friedrich-Hund-Platz 1, 37077 Göttingen
Telefon: 0551 39-29429
E-Mail: sarah.koester@uni-goettingen.de
Internet: http://www.uni-goettingen.de/koesterlab

Dr. Charlotta Lorenz
ETH Zürich
Weiche und Lebende Materialien
Vladimir-Prelog-Weg 1–5/10, 8093 Zürich
Telefon: +41 44 632 32 73
E-Mail: charlotta.lorenz@mat.ethz.ch

Originalpublikation:

Charlotta Lorenz, Johanna Forsting, Robert W. Style, Stefan Klumpp, Sarah Köster. Keratin filament mechanics and energy dissipation are determined by metal-like plasticity. Matter 2023. https://doi.org/10.1016/j.matt.2023.04.014

http://www.uni-goettingen.de/

Media Contact

Thomas Richter Öffentlichkeitsarbeit
Georg-August-Universität Göttingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Spitzenforschung in der Bioprozesstechnik

Das IMC Krems University of Applied Sciences (IMC Krems) hat sich im Bereich Bioprocess Engineering (Bioprozess- oder Prozesstechnik) als Institution mit herausragender Expertise im Bereich Fermentationstechnologie etabliert. Unter der Leitung…

Datensammler am Meeresgrund

Neuer Messknoten vor Boknis Eck wurde heute installiert. In der Eckernförder Bucht, knapp zwei Kilometer vor der Küste, befindet sich eine der ältesten marinen Zeitserienstationen weltweit: Boknis Eck. Seit 1957…

Rotorblätter für Mega-Windkraftanlagen optimiert

Ein internationales Forschungsteam an der Fachhochschule (FH) Kiel hat die aerodynamischen Profile von Rotorblättern von Mega-Windkraftanlagen optimiert. Hierfür analysierte das Team den Übergangsbereich von Rotorblättern direkt an der Rotornabe, der…