Hirntumorzellen erobern das Gehirn als neuronale Trittbrettfahrer
WissenschaftlerInnen des Universitätsklinikums und der Universität Heidelberg sowie des Deutschen Krebsforschungszentrums haben bei Gioblastomen, den agressivsten aller Hirntumoren, eine elementar neue Ausbreitungsstrategie entdeckt / Hirntumorzellen imitieren Eigenschaften und Bewegungsmuster von Nervenzellen / Publikation und Editorial in Fachzeitschrift Cell
Bestimmte Zellen aus Glioblastomen, der aggressivsten Form von Hirntumoren, imitieren Eigenschaften und Bewegungsstrategien von unreifen Nervenzellen, um das Gehirn zu kolonisieren. Grundlegend neue Ergebnisse von Forschenden des Universitätsklinikums Heidelberg (UKHD) und der Medizinischen Fakultät Heidelberg (MFHD) sowie des Deutschen Krebsforschungszentrums (DKFZ) geben erstmals detaillierte Einblicke in die Ausbreitungsmechanismen des Tumors: Die für Glioblastome typischen Zellgebilde, die sich weit durch das Gehirngewebe ziehen, , sondern werden von ausschwärmenden Krebszellen gebildet. Sie bewegen sich durch das gesunde Hirngewebe, siedeln sich an geeigneter Stelle an und bilden dann bösartige Netzwerke, über die sie sich wieder mit dem „Muttertumor“ verbinden. Dabei ähneln diese Invasoren nicht nur in ihrem molekularen Profil den Vorläuferzellen von Nervenzellen, sondern sie wandern auch in gleichen Bewegungsmustern und knüpfen wie diese Kontakte mit gesunden Nervenzellen des Gehirns. Die Ergebnisse sind aktuell in „Cell“ erschienen und in einem Editorial gewürdigt worden.
Glioblastome durchziehen das Gehirn wie ein Pilzgeflecht. Daher lassen sie sich durch eine Operation nicht vollständig entfernen und überstehen dank der weiten Verzweigungen auch intensive Chemo- und Strahlentherapie. Das macht sie zu den gefährlichsten Tumoren des Menschen mit einer durchschnittlichen Überlebenszeit von rund 15 Monaten nach Erstdiagnose. Wie es zu diesem charakteristischen Wachstum kommt, ist Forschungsgegenstand der Arbeitsgruppen von Professor Dr. Frank Winkler in der Klinischen Kooperationseinheit Neuroonkologie an UKHD und DKFZ, Professor Dr. Thomas Kuner, Leiter der Abteilung Funktionelle Neuroanatomie am Institut für Anatomie und Zellbiologie, sowie Dr. Dr. Varun Venkataramani. Das Team beschrieb bereits 2015 das Geflecht aus Zellfortsätzen der Glioblastomzellen als eine Ursache für die Therapieresistenz. Über diese Verschaltung können die Tumorzellen Schäden reparieren und überlebenswichtige Stoffe austauschen. 2019 entdeckten die Forschenden, dass die Tumorzellen direkte Signale von Neuronen empfangen und so zum Wachstum angeregt werden.
Zuletzt nahm das Team die verschiedenen Zelltypen innerhalb der Hirntumoren unter die Lupe bzw. das Mikroskop: „Glioblastome bestehen aus sehr heterogenen Zellen. Wir wollten wissen, in wie weit sich die verschiedenen Zelltypen in ihren Eigenschaften unterscheiden“, so Winkler. Dabei entdeckten sie eine sehr agile Untergruppe von Krebszellen, die in mehrfacher Hinsicht den Vorläufern von Nervenzellen ähneln: in ihren molekularen Merkmalen, in ihrer Fähigkeit zur Fortbewegung im Gehirn und in der Art und Weise, wie sie mit den Nervenzellen des Gehirns über Synapsen, speziellen Kontaktstellen zur Signalweiterleitung, Verbindung aufnehmen und von diesen Signale empfangen.
„Mit hochauflösenden mikroskopischen Verfahren konnten wir an menschlichen Glioblastomen in Mausgehirnen beobachten, dass diese Krebszellen sich nach dem gleichen Muster durch das Gehirn bewegen wie Raubtiere auf der Suche nach Beute durch ihr Revier – ähnlich wie Nerven-Vorläuferzellen. Dabei scannen sie mit feinen Zellausläufern die Umgebung und erhalten über ihre Synapsen aktivierende Signale der Nervenzellen, die sie für die Invasion zu brauchen scheinen“, beschreibt Prof. Kuner. Sein Team nutzte eine Kombination moderner mikroskopischer und molekularbiologischer Methoden, die detaillierte und dreidimensionale Blicke auf das Verhalten der Zellen im Gewebe, ihre Zell-Zell-Kontakte sowie ihre molekularen Eigenschaften lieferten.
Unter dem Mikroskop zeigte sich: Nachdem die ausschwärmenden Zellen einen günstigen Platz gefunden haben, verändern sie ihre molekularen Eigenschaften und verwandeln sich in einen Zelltyp, der sich nicht mehr bewegt, sondern Netzwerke ausbildet. „Das Verhalten gleicht der Kolonisierung eines neuen Kontinents: Erst ziehen einzelne Siedler los in die Weite, nehmen Kontakt mit den Einheimischen auf und werden sesshaft.“, beschreibt Erstautor Dr. Varun Venkataramani.
Professor Dr. Wolfgang Wick, Ärztlicher Direktor der Neurologischen Klinik am UKHD, sieht in den Ergebnissen einen Meilenstein im Bereich „Cancer Neuroscience“, der Wissenschaft vom komplexen Wechselspiel zwischen Nervensystem und Tumorzellen: „Erstmals verstehen wir, was die unterschiedlichen Zelltypen eines Glioblastoms tun, welche molekularen Eigenschaften mit welchem Verhalten einhergehen und welcher Zelltyp – nämlich die ausschwärmenden Zellen – für das invasive Tumorwachstum verantwortlich ist. Für die Resistenz ist dagegen der netzwerkbildende Zelltyp verantwortlich, der sich erst aus diesen entwickelt. Dieses Wissen könnte Ansatzpunkte für neue Therapien liefern.“ Im nächsten Schritt sollen die molekularen Mechanismen der Bewegung, der Kommunikation mit den Nervenzellen sowie der Vernetzung entschlüsselt werden.
Wissenschaftliche Ansprechpartner:
Prof. Dr. med. Frank Winkler
Geschäftsführender Oberarzt
Neurologische Universitätsklinik Heidelberg
Klinische Kooperationseinheit Neuroonkologie, Deutsches Krebsforschungszentrum
E-Mail: frank.winkler@med.uni-heidelberg.de
Prof. Dr. med. Thomas Kuner
Direktor
Abteilung für Funktionelle Neuroanatomie
Institut für Anatomie und Zellbiologie
E-Mail: thomas.kuner@uni-heidelberg.de
Dr. med. Dr. rer. nat. Varun Venkataramani
Arbeitsgruppenleiter
Neurologische Universitätsklinik Heidelberg
Abteilung für Funktionelle Neuroanatomie
Institut für Anatomie und Zellbiologie
Klinische Kooperationseinheit Neuroonkologie, Deutsches Krebsforschungszentrum
E-Mail: varun.venkataramani@med.uni-heidelberg.de
Originalpublikation:
Venkataramani V, Yang Y , Schubert MC, et al. Glioblastoma hijacks neuronal mechanisms for brain invasion,
Cell. 2022, https://doi.org/10.1016/j.cell.2022.06.054
Weitere Informationen:
https://www.klinikum.uni-heidelberg.de/neurologische-klinik/neurologie-und-polik…
https://www.dkfz.de/de/neuroonkologie/Mitarbeiter_AG_Winkler.html
https://www.medizinische-fakultaet-hd.uni-heidelberg.de/einrichtungen/institute/…
Media Contact
Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Die Roboterhand lernt zu fühlen
Fraunhofer IWS kombiniert Konzepte aus der Natur mit Sensorik und 3D-Druck. Damit Ernteroboter, U-Boot-Greifer und autonome Rover auf fernen Planeten künftig universeller einsetzbar und selbstständiger werden, bringen Forschende des Fraunhofer-Instituts…
Regenschutz für Rotorblätter
Kleine Tropfen, große Wirkung: Regen kann auf Dauer die Oberflächen von Rotorblättern beschädigen, die Leistungsfähigkeit und Wirtschaftlichkeit von Windenergieanlagen können sinken, vor allem auf See. Durch die Entwicklung innovativer Reparaturlösungen…
Materialforschung: Überraschung an der Korngrenze
Mithilfe modernster Mikroskopie- und Simulationstechniken konnte ein internationales Forschungsteam erstmals beobachten, wie gelöste Elemente neue Korngrenzphasen bilden. Mit modernsten Mikroskopie- und Simulationstechniken hat ein internationales Forscherteam systematisch beobachtet, wie Eisenatome…