Erzeugung bisher unbekannter Stickstoffverbindungen
Nichtmetallische Nitride sind Verbindungen, in denen Stickstoff und nicht-metallische Elemente durch kovalente Bindungen verknüpft sind. Wegen ihrer technologisch interessanten Eigenschaften sind sie immer mehr in den Fokus der Materialforschung gerückt.
Ein internationales Team mit Forscher*innen der Universität Bayreuth stellt in der Zeitschrift „Chemistry – A European Journal“ bisher unbekannte, unter sehr hohen Drücken erzeugte Phosphor-Stickstoffverbindungen vor. Sie enthalten Struktureinheiten, deren Existenz zuvor nicht empirisch nachgewiesen werden konnte. Die Studie zeigt beispielhaft die großen, noch ungenutzten Potenziale der Hochdruckforschung für die Stickstoffchemie.
Den Forscher*innen ist es gelungen, bei einem Druck von 72 Gigapascal eine bisher unbekannte Modifikation des Phosphornitrids P₃N₅, den Polymorph δ-P₃N₅, zu synthetisieren. Bei 134 Gigapascal bildete sich in der Diamantstempelzelle das Phosphornitrid PN₂. Beide Verbindungen sind als ultra-inkompressible Materialien klassifiziert, mit Volumenmodulen oberhalb von 320 Gigapascal. Eine wesentliche Ursache für diese extreme Festigkeit fanden die Forscher*innen durch Synchrotron-Röntgenbeugungsanalysen und Dichtefunktionaltheorie-Berechnungen heraus: Kristallstrukturen von δ-P₃N₅ und PN₂ bestehen aus einem dichten Netz von PN₆-Oktaedern, wobei jeweils ein Phosphor-Atom von sechs Stickstoff-Atomen umgeben ist. Bisher war die Existenz dieser Struktureinheiten nur vermutet worden, jetzt konnte sie erstmals empirisch nachgewiesen werden.
Der Polymorph δ-P₃N₅ wandelte sich bei einer Verringerung des Kompressionsdrucks in eine andere, ebenfalls bisher unbekannte Modifikation von P₃N₅: Bei sieben Gigapascal entstand der Polymorph α′-P₃N₅. Es handelt sich um ein neues festes Material, das unter normalen Umgebungsbedingungen stabil bleibt. Die Kristallstruktur dieses Phosphornitrids ist ebenfalls ungewöhnlich, da sie aus PN₄-Tetraedern zusammengesetzt ist: Im Zentrum dieser pyramidenförmigen Struktureinheiten befindet sich ein Phosphor-Atom, während die vier „Ecken“ jeweils mit einem Stickstoff-Atom besetzt sind. Im Vergleich mit dem bekannten Polymorph α-P₃N₅, der in der Forschung bereits als möglicher industrieller Werkstoff diskutiert wird, besitzt α′-P₃N₅ eine deutlich höhere Dichte. Er ist daher erheblich härter und im Hinblick auf potenzielle technische Anwendungen möglicherweise noch attraktiver.
Hochdruckforschung zu Nichtmetallnitriden kann das Verständnis der Stickstoffchemie erweitern
„Das α′-P₃N₅, das bei der Dekompression von δ-P₃N₅ entsteht, ist ein Beispiel dafür, wie Stickstoffverbindungen mit hochinteressanten Eigenschaften über den Umweg von Hochdruck-Synthesen entdeckt werden können. Weitere Untersuchungen sollten jetzt folgen, um potenzielle Anwendungen dieses neuen Materials auszuloten. Mit unserer Veröffentlichung wollen wir dazu anregen, die Hochdruck- und Hochtemperaturforschung zu Nichtmetallnitriden – die im Vergleich mit Metallnitriden bisher weitgehend vernachlässigt wurden – zu intensivieren. Neue Studien auf diesem spannenden Gebiet können das Verständnis der Stickstoffchemie bedeutend erweitern. Sie werden möglicherweise auch zur Entdeckung von recycelfähigen Materialien für Produkte des täglichen Lebens beitragen“, sagt die Bayreuther Kristallphysikerin Prof. Dr. Dr. h.c. Natalia Dubrovinskaia vom Labor für Kristallographie der Universität Bayreuth, die die Forschungsarbeiten koordiniert hat.
Internationale Kooperation
An der neuen Studie waren zusammen mit dem Bayerischen Geoinstitut (BGI) und dem Labor für Kristallographie der Universität Bayreuth zahlreiche weitere Forschungspartner beteiligt: die LMU München, die Universität Edinburgh, die Universität Linköping, die Shandong University in Jinan/China, das Deutsche Elektronen-Synchrotron (DESY) in Hamburg, die European Synchrotron Radiation Facility in Grenoble sowie das Center for Advanced Radiation Sources an der Universität Chicago.
Wissenschaftliche Ansprechpartner:
Prof. Dr. Dr. h.c. Natalia Dubrovinskaia
Labor für Kristallographie
Universität Bayreuth
Tel.: +49 (0)921 / 55 -3880 oder -3881
E-Mail: Natalia.Dubrovinskaia@uni-bayreuth.de
Prof. Dr. Dr. h.c. Leonid Dubrovinsky
Bayerisches Geoinstitut (BGI)
University of Bayreuth
Tel.: +49 (0)921 / 55 -3736 oder -3707
E-Mail: Leonid.Dubrovinsky@uni-bayreuth.de
Originalpublikation:
Dominique Laniel et al.: Revealing Phosphorus Nitrides up to the Megabar Regime: Synthesis of α′-P₃N₅, δ-P₃N₅ and PN₂. Chemistry – A European Journal (2022). DOI: https://dx.doi.org/10.1002/chem.202201998
Dieser Forschungsbeitrag wurde auf der Titelseite der Zeitschrift “Chemistry – A European Journal” als Highlight hervorgehoben.
Media Contact
Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Selen-Proteine …
Neuer Ansatzpunkt für die Krebsforschung. Eine aktuelle Studie der Uni Würzburg zeigt, wie ein wichtiges Enzym in unserem Körper bei der Produktion von Selen-Proteinen unterstützt – für die Behandlung von…
Pendler-Bike der Zukunft
– h_da präsentiert fahrbereiten Prototyp des „Darmstadt Vehicle“. Das „Darmstadt Vehicle“, kurz DaVe, ist ein neuartiges Allwetter-Fahrzeug für Pendelnde. Es ist als schnelle und komfortable Alternative zum Auto gedacht, soll…
Neuartige Methode zur Tumorbekämpfung
Carl-Zeiss-Stiftung fördert Projekt der Hochschule Aalen mit einer Million Euro. Die bisherige Krebstherapie effizienter gestalten bei deutlicher Reduzierung der Nebenwirkungen auf gesundes Gewebe – dies ist das Ziel eines Projekts…