Junge Gene passen sich schneller an als Alte

Auf dem Weg zum Fitness-Gipfel.
Max-Planck-Institut für Evolutionsbiologie

Eine neue Studie des Max-Planck-Instituts für Evolutionsbiologie in Plön und der University of Sussex in Großbritannien zeigt, dass das Alter eines Gens bestimmt, wie schnell es sich anpasst. Diese Erkenntnisse demonstrieren, wie die Evolution der Gene als „adaptiver Spaziergang“ durch die Zeit verläuft.

Neue Arten entstehen und entwickeln sich, weil Individuen Mutationen in ihrem Genom anhäufen, von denen einige keine Auswirkungen haben. Andere führen zu Veränderungen, die ihren Trägern deutliche Wettbewerbsvorteile verschaffen. Schon 1932 führte Sewall Wright eine Metapher ein, die jahrzehntelange theoretische und experimentelle Forschung in der Evolutionsbiologie inspirierte, um den Prozess der Anpassung zu beschreiben. Wright beschrieb das Modell der „Fitness-Landschaft“. Hier beschrieb er eine sich entwickelnden Populationen als „Wanderer“, die sich auf einen Fitness-Gipfel zubewegen. Ganz so wie ein Bergsteiger, der langsam den Gipfel eines Berges erklimmt. 1998 wies Orr nach, dass dieser „adaptive Spaziergang“ einer einfachen Regel des abnehmenden Ertrags folgt: Je weiter eine Population von ihrem Fitnessgipfel entfernt ist, desto größer sind die Schritte, die sie macht. Eine Vorhersage dieser Theorie ist, dass kürzlich entwickelte, also „junge“ Gene dazu neigen, mehr adaptive Mutationen mit größeren Auswirkungen anzuhäufen als ältere Gene, weil sie weiter von ihrem Fitnessgipfel entfernt sind. Genau diese Hypothese wollten Ana Filipa Moutinho und Julien Dutheil vom Max-Planck-Institut für Evolutionsbiologie zusammen mit Adam Eyre-Walker von der University of Sussex überprüfen.

Die Überprüfung dieser Hypothese erwies sich jedoch als ziemlich schwierig. Die historischen Aufzeichnungen über die in einem Gen angesammelten Mutationen sind in der Regel nicht verfügbar, und ihre Auswirkungen auf die Fitness sind weitgehend unbekannt. Außerdem können andere Eigenschaften von Genen, wie beispielsweise ihre Länge, den Effekt des Genalters verzerren. Daher schlugen die Autoren einen neuen Ansatz vor, um das adaptive Walk-Modell der Genevolution zu testen.

Zunächst verwendeten sie populationsgenetische Modelle, die die Variation der Fitnesswirkung von Mutationen bewerten können. Dazu verglichen sie die Genome mehrerer Individuen einer Population und maßen die Rate der adaptiven Evolution in verschiedenen Genkategorien. Ebenso machten sie sich die Tatsache zunutze, dass nicht alle Gene in einem Genom gleich alt sind. „Einige Gene sind jung und werden von nur wenigen eng verwandten Arten geteilt, während andere älter sind und von Arten geteilt werden, die sich vor Millionen von Jahren getrennt haben. Schließlich nutzten sie die Verteilung der Mutationen auf Gene unterschiedlichen Alters, um zu verstehen, wie sich adaptive Mutationen im Laufe der Zeit verbreiten.

Anhand von zwei verschiedenen Arten, der Fruchtfliege Drosophila melanogaster und der kleinen Blütenpflanze Arabidopsis thaliana, zeigte die Studie, dass das Alter eines Gens die Geschwindigkeit der molekularen Anpassung erheblich beeinflusst und dass Mutationen in jungen Genen tendenziell größere Auswirkungen haben. Diese Ergebnisse liefern den ersten eindeutigen empirischen Beweis dafür, dass die molekulare Evolution über einen langen Zeitraum hinweg einem adaptiven Wanderungsmodell folgt, und ergänzen die vor fast 100 Jahren vorgeschlagene Theorie der Fitnesslandschaft um eine neue Beweislage.

Originalpublikation:

https://doi.org/10.1371/journal.pbio.3001775

Weitere Informationen:

https://www.evolbio.mpg.de/3608782/news_publication_19213507_transferred?c=5697

Media Contact

Michael Hesse Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Evolutionsbiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Spitzenforschung in der Bioprozesstechnik

Das IMC Krems University of Applied Sciences (IMC Krems) hat sich im Bereich Bioprocess Engineering (Bioprozess- oder Prozesstechnik) als Institution mit herausragender Expertise im Bereich Fermentationstechnologie etabliert. Unter der Leitung…

Datensammler am Meeresgrund

Neuer Messknoten vor Boknis Eck wurde heute installiert. In der Eckernförder Bucht, knapp zwei Kilometer vor der Küste, befindet sich eine der ältesten marinen Zeitserienstationen weltweit: Boknis Eck. Seit 1957…

Rotorblätter für Mega-Windkraftanlagen optimiert

Ein internationales Forschungsteam an der Fachhochschule (FH) Kiel hat die aerodynamischen Profile von Rotorblättern von Mega-Windkraftanlagen optimiert. Hierfür analysierte das Team den Übergangsbereich von Rotorblättern direkt an der Rotornabe, der…