Just-in-time-Produktion: Wie Pflanzen intelligent Chlorophyll produzieren
HU-Forschende weisen die zusätzliche Bedeutung eines Bindeproteins für die Chlorophyll-Synthese nach
In der Photosynthese wandeln Pflanzen mittels Chlorophyll die uneingeschränkt zur Verfügung stehende Sonnenenergie in biochemische Energie um, die sie für ihren Stoffwechsel nutzen. Wie stellen Pflanzen Chlorophyll allerdings her und wie schaffen sie es, immer ausreichende Mengen des grünen Pigments zur Verfügung zu haben?
Diese Fragen erforschen Bernhard Grimm und seine Arbeitsgruppe Pflanzenpsychologie vom Institut für Biologie der Humboldt-Universität zu Berlin. Sie beschäftigten sich mit dem komplexen Syntheseweg der Tetrapyrrole, chemische Verbindungen, zu denen nicht nur Chlorophyll gehört, sondern auch das Sauerstoff-bindende Molekül Häm. Über zahlreiche Syntheseschritte wird aus acht Molekülen der Aminosäure Glutamat jeweils ein Molekül Chlorophyll oder Häm erzeugt. Bereits am Beginn des Syntheseweges entscheidet die Pflanze frühzeitig, wie viel Chlorophyll synthetisiert werden kann. Dazu stehen zahlreiche Regulationsmechanismen bereit.
Seit vielen Jahren nehmen Forscher:innen an, dass die ersten Enzymschritte auch funktionell und strukturell zusammengehalten werden müssen, um Synthese von Chlorophyll effizient zu regulieren. Diesen Beweis erbrachte nun Neha Sinha aus der Arbeitsgruppe Pflanzenpsychologie in Zusammenarbeit mit Forscher:innen der Westfälischen Wilhelms-Universität Münster. Sie klärten auf, dass der Zusammenhalt der beiden ersten Enzyme, Glutamyl-tRNA Reduktase (GluTR) und Glutamat-1-Semialdehyd Aminotransferase, durch das GluTR-Bindeprotein gewährleistet wird. Ein Dimer dieses Bindeproteins sorgt für den Aufbau eines multimeren Proteinkomplexes, an dem zwei Moleküle der GluTR und vier Moleküle der GSAAT beteiligt sind (siehe Abbildung). Damit ist eine wirkungsvolle Weiterleitung der Metabolite zwischen den beiden Enzymen und ebenso eine genaue Kontrolle der Enzymaktivitäten ermöglicht.
Schon 2018 publizierte die HU-Arbeitsgruppe, dass das GluTR-Bindeprotein auch überschüssiges Häm, das andere Tetrapyrrol-Endprodukt, binden kann und letztendlich durch diesen Rückkopplungseffekt innerhalb der Tetrapyrrolsynthese die frühen Enzyme des Stoffwechselwegs kontrollieren kann (Richter et al., Elife, 2018). Die Hämbindung des GluTR-Bindeproteins löst die Interaktion zum GluTR, die damit verstärkt durch Proteasen abgebaut wird. Damit ist der multimere Proteinkomplex aufgelöst und die Synthese weiterer Chlorophyllbausteine unterbrochen.
„Mit diesen neuen Ergebnissen können wir dem GluTR Bindeprotein neben der Häm-abhängigen Kontrolle der GluTR-Stabilität nun auch eine weitere Rolle für die Verknüpfung der beiden ersten Enzymen des Tetrapyrrolsyntheseweges zuschrieben“, sagt Bernhard Grimm. In ihrer weiteren Arbeit wird die Forschungsgruppe versuchen, die Topologie und die Organisation der Synthese von Chlorophyll und Häm innerhalb des für die Photosynthese zuständigen Organs, dem Chloroplasten, aufzuklären.
Wissenschaftliche Ansprechpartner:
Prof. Dr. Bernhard Grimm
Institut für Biologie
Humboldt-Universität zu Berlin
Tel.: 030 2093-98332
E-Mail: bernhard.grimm@rz.hu-berlin.de
Originalpublikation:
Neha Sinha, Jürgen Eirich, Iris Finkemeier, Bernhard Grimm. “Glutamate 1-semialdehyde aminotransferase is connected to GluTR by GBP and contributes to the rate-limiting ALA synthesis.” 16.08.2022, The Plant Cell
https://doi.org/10.1093/plcell/koac237
Media Contact
Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen
An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser…
Tsunami-Frühwarnsystem im Indischen Ozean
20 Jahre nach der Tsunami-Katastrophe… Dank des unter Federführung des GFZ von 2005 bis 2008 entwickelten Frühwarnsystems GITEWS ist heute nicht nur der Indische Ozean besser auf solche Naturgefahren vorbereitet….
Resistente Bakterien in der Ostsee
Greifswalder Publikation in npj Clean Water. Ein Forschungsteam des Helmholtz-Instituts für One Health (HIOH) hat die Verbreitung und Eigenschaften von antibiotikaresistenten Bakterien in der Ostsee untersucht. Die Ergebnisse ihrer Arbeit…