Kleine Kugeln retten Enzyme für die Biokatalyse

Die Probe bestehend aus den Kügelchen (mit darauf gebundenen Enzymen) und Puffer wird auf ein kleines Metallplättchen aufgebracht, um eine gute Leitfähigkeit bei der nachfolgenden Plasmabehandlung zu gewährleisten.
© RUB, Marquard

Manche Enzyme, wie das hier untersuchte aus Pilzen, sind in der Lage, wertvolle Stoffe wie etwa den Duftstoff (R)-1-Phenylethanol herzustellen. Dafür setzen sie ein kostengünstigeres Substrat mithilfe eines Kosubstrates um. Ein Forschungsteam der Biologie der Ruhr-Universität Bochum kam auf die Idee, ihnen dieses Kosubstrat über ein Plasma zukommen zu lassen – eine verrückte Idee, da Plasmen in der Regel zerstörerische Wirkung auf Biomoleküle haben. Mittels mehrerer Tricks gelang es den Forschenden um Prof. Dr. Julia Bandow und Dr. Tim Dirks jedoch. Einen dieser Tricks haben sie nun verfeinert und das Verfahren somit verbessert:

Sie befestigen die Enzyme an kleinen Kugeln, um sie am Boden des Reaktors festzuhalten und sie so vor dem schädlichen Einfluss des Plasmas zu schützen. Durch die Wahl des geeignetsten Kugeltyps konnten sie die Stabilität des Enzyms um das 44-fache steigern. Sie berichten im Journal of the Royal Society Interface vom 25. Oktober 2023.

Modellenzym aus einem Speisepilz

„In der plasmagetriebenen Biokatalyse wollen wir Enzyme, die Wasserstoffperoxid nutzen, um ein Substrat in ein wertvolleres Produkt umzuwandeln, mit technischen Plasmen betreiben“, erklärt Julia Bandow, Leiterin des Lehrstuhls für Angewandte Mikrobiologie. Die Plasmen – energetisch aufgeladene Gase – produzieren neben einer Vielzahl an reaktiven Spezies Wasserstoffperoxid.

Tim Dirks arbeitet am Lehrstuhl für Angewandte Mikrobiologie der Ruhr-Universität Bochum.
Tim Dirks arbeitet am Lehrstuhl für Angewandte Mikrobiologie der Ruhr-Universität Bochum. © RUB, Marquard

Als Modellenzym nutzen die Forschenden die unspezifische Peroxigenase (AaeUPO) aus dem Speisepilz Agrocybe aegerita. In ersten Studien konnten sie zeigen, dass die plasmagetriebene Biokatalyse damit zwar funktioniert, es aber auch zentrale Einschränkungen gibt. „Entscheidend war, dass die Enzyme sensibel auf die Plasmabehandlung reagieren und somit in kurzer Zeit inaktiviert werden“, erzählt Tim Dirks, Erstautor der aktuellen Studie. „Um das zu verhindern, nutzen wir die Methode der Enzymimmobilisierung, heften die Enzyme also an sogenannte Beads: kleine Kugeln mit einer porösen Oberfläche.“

Kugeln halten die Enzyme am Boden

Aufgrund der Schwerkraft liegen diese Kugeln auf dem Boden der Probe und sorgen für eine Schutzzone zwischen der oben gelegenen Plasmaphase und den Enzymen. Schon früh beobachtete das Forschungsteam, dass auch die Wahl verschiedener Immobilisierungsmethoden zu unterschiedlichem Überleben von Enzymen führte. Ziel der aktuellen Arbeit war es daher, anhand einer größeren Auswahl an Enzymen die Auswirkung verschiedener Immobilisierungsmethoden auf die Plasmastabilität von Enzymen zu untersuchen.

Fünf verschiedene Enzyme wurden ausgewählt, zwei davon setzen ebenfalls Wasserstoffperoxid um, drei benötigen kein Wasserstoffperoxid für ihre Aktivität. Dazu testeten die Forschenden neun verschiedene Arten von Beads, die teils eine Harz-, teils eine Silika-Oberfläche mit oder ohne Polymerbeschichtung aufwiesen. Nach der Immobilisierung wurden die Enzyme für bis zu fünf Minuten mit Plasma behandelt. Danach verglichen die Forschenden ihre Restaktivität mit unbehandelten Kontrollen.

Der Weg zu neuen Anwendungen

Die Kugeln mit Harzoberflächen zeigten dabei die besten Resultate bei allen fünf Enzymen. „Am besten schnitten die Amino- und Epoxy-Butyl-Beads ab“, so Tim Dirks. Bei beiden gehen die Enzyme eine starke, kovalente Bindung mit dem Trägermaterial ein, welche nicht auflösbar ist. „Diese Art der Immobilisierung scheint die Beweglichkeit der Enzyme einzuschränken, was sie weniger anfällig für plasmainduzierte Inaktivierungen macht“, folgert Tim Dirks. Das Team verlängerte für die vielversprechendsten Kandidaten die Plasmabehandlungszeiten auf bis zu eine Stunde und konnte so die Stabilität der Enzyme unter Plasmabehandlung durch Immobilisierung bis zu einem Faktor von 44 erhöhen. „Die Erkenntnisse dieser Studie ebnen somit den Weg für neue Anwendungen, die in Zukunft Enzyme mit technischen Plasmen verbinden wollen“, so die Forschenden.

Förderung

Die Arbeiten wurden gefördert durch die Deutsche Forschungsgemeinschaft im Rahmen des Sonderforschungsbereichs 1316 und des Graduiertenkollegs 2341.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Julia Bandow
Angewandte Mikrobiologie
Fakultät für Biologie und Biotechnologie
Ruhr-Universität Bochum
Tel.: + 49 234 32 23102
E-Mail: julia.bandow@ruhr-uni-bochum.de

Originalpublikation:

Tim Dirks, Abdulkadir Yayci, Sabrina Klopsch, Marco Krewing, Wuyuan Zhang, Frank Hollmann, Julia E. Bandow: Immobilization Protects Enzymes From Plasma-Mediated Inactivation, in: Journal of the Royal Society Interface, 2023, DOI: 10.1098/rsif.2023.0299, https://royalsocietypublishing.org/doi/full/10.1098/rsif.2023.0299

https://news.rub.de/presseinformationen/wissenschaft/2023-11-21-mikrobiologie-kleine-kugeln-retten-enzyme-fuer-die-biokatalyse

Media Contact

Meike Drießen Dezernat Hochschulkommunikation
Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Spitzenforschung in der Bioprozesstechnik

Das IMC Krems University of Applied Sciences (IMC Krems) hat sich im Bereich Bioprocess Engineering (Bioprozess- oder Prozesstechnik) als Institution mit herausragender Expertise im Bereich Fermentationstechnologie etabliert. Unter der Leitung…

Datensammler am Meeresgrund

Neuer Messknoten vor Boknis Eck wurde heute installiert. In der Eckernförder Bucht, knapp zwei Kilometer vor der Küste, befindet sich eine der ältesten marinen Zeitserienstationen weltweit: Boknis Eck. Seit 1957…

Rotorblätter für Mega-Windkraftanlagen optimiert

Ein internationales Forschungsteam an der Fachhochschule (FH) Kiel hat die aerodynamischen Profile von Rotorblättern von Mega-Windkraftanlagen optimiert. Hierfür analysierte das Team den Übergangsbereich von Rotorblättern direkt an der Rotornabe, der…