Kleines Molekül mit großer Wirkung
Die Durchblutung der Lunge wird durch einen komplexen Mechanismus reguliert: Dieser lenkt den Blutfluss von unzureichend zu besser belüfteten Bereichen der Lunge, so dass der Gasaustausch und die Sauerstoffaufnahme optimiert werden. Wissenschaftler der Charité – Universitätsmedizin Berlin haben jetzt entscheidende molekulare Vorgänge identifiziert, die diesem Mechanismus zugrunde liegen. Die Studie ist in der aktuellen Ausgabe der Fachzeitschrift Proceedings of the National Academy of Sciences* veröffentlicht.
Nimmt die Belüftung in einem Teil der Lunge ab, beispielsweise durch eine Lungenentzündung, führt dies zu einem lokalen Sauerstoffmangel und somit zu einer Verengung der Blutgefäße in diesem Abschnitt. So passt das Atmungsorgan seine Durchblutung den lokalen Ventilationsverhältnissen an: Schlechter belüftete Abschnitte werden weniger durchblutet, besser ventilierte hingegen stärker. Auf diese Weise wird verhindert, dass Blut durch die Lunge fließt, ohne mit Sauerstoff angereichert zu werden.
Die Wissenschaftler um Prof. Dr. Wolfgang Kübler vom Institut für Physiologie zeigen in Zusammenarbeit mit Wissenschaftlern des Sonderforschungsbereiches/Transregio 84 der Medizinischen Klinik mit Schwerpunkt Infektiologie und Pneumologie nun erstmals, dass dieser Mechanismus, der sich Hypoxische Pulmonale Vasokonstriktion (HPV) nennt, im Wesentlichen durch zwei zentrale Moleküle reguliert wird. Den ersten entscheidenden Baustein bilden dabei die Sphingolipide, also Fette, die in der Membran von Zellen verankert sind. Das zweite beteiligte Molekül ist ein Ionenkanal, der sogenannte Cystic Fibrosis Transmembrance Conductance Regulator (CFTR).
Mukoviszidose beispielsweise, eine angeborene Stoffwechselerkrankung, ist Folge einer Mutation des CFTR-Kanals. Kennzeichnend für diese Krankheit ist, dass die schleimbildenden Drüsen des Körpers ein zähes Sekret bilden, das die Ausführungsgänge der Drüsen verstopft und weitere Organe beeinträchtigt. Patienten, die unter Mukoviszidose leiden, weisen zudem einen verminderten Sauerstoffgehalt im Blut auf.
In ihrer Studie zeigen die Forscher nun, dass der mangelnde Gasaustausch unmittelbar auf eine Hemmung der HPV zurückgeführt werden kann, die wiederum Folge des mutierten CFTR-Kanals ist. Die Ergebnisse erklären zudem, warum es bei zahlreichen viralen oder bakteriellen Lungeninfektionen zu einer verminderten Sauerstoffaufnahme kommt: Diese Infektionen führen zu einem Verlust oder einer Hemmung der CFTR-Kanalfunktion und damit zu einer Störung der HPV.
„Unsere Ergebnisse vertiefen das bisherige Verständnis der Regulationsmechanismen des Gasaustauschs in der Lunge. Auf dieser Grundlage können wir neue molekulare Strukturen für gezielte Therapiestrategien identifizieren, die zur Verbesserung der Sauerstoffversorgung bei Lungenerkrankungen führen“, resümiert Prof. Kübler.
*Christoph Tabeling, Hanpo Yu, Liming Wang, Hannes Ranke, Neil M. Goldenberg, Diana Zabini, Elena Noe, Adrienn Krauszman, Birgitt Gutbier, Jun Yin, Michael Schaefer, Christoph Arenz, Andreas C. Hocke, Norbert Suttorp, Richard L. Proia, Martin Witzenrath and Wolfgang M. Kuebler. CFTR and sphingolipids mediate hypoxic pulmonary vasoconstriction PNAS 2015. published ahead of print March 17, 2015. doi:10.1073/pnas.1421190112.
Kontakt:
Prof. Dr. Wolfgang Kübler
Institut für Physiologie
Charité – Universitätsmedizin Berlin
t: +49 450 528 531
wolfgang.kuebler@charite.de
Media Contact
Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Die Roboterhand lernt zu fühlen
Fraunhofer IWS kombiniert Konzepte aus der Natur mit Sensorik und 3D-Druck. Damit Ernteroboter, U-Boot-Greifer und autonome Rover auf fernen Planeten künftig universeller einsetzbar und selbstständiger werden, bringen Forschende des Fraunhofer-Instituts…
Regenschutz für Rotorblätter
Kleine Tropfen, große Wirkung: Regen kann auf Dauer die Oberflächen von Rotorblättern beschädigen, die Leistungsfähigkeit und Wirtschaftlichkeit von Windenergieanlagen können sinken, vor allem auf See. Durch die Entwicklung innovativer Reparaturlösungen…
Materialforschung: Überraschung an der Korngrenze
Mithilfe modernster Mikroskopie- und Simulationstechniken konnte ein internationales Forschungsteam erstmals beobachten, wie gelöste Elemente neue Korngrenzphasen bilden. Mit modernsten Mikroskopie- und Simulationstechniken hat ein internationales Forscherteam systematisch beobachtet, wie Eisenatome…