Komplexe Farbstoffmoleküle in drei einfachen Schritten

In drei einfachen Schritten haben die Wissenschaftler aus acht einzelnen Molekülen ein großes Molekül, ein Oktamer, hergestellt.
Daniel B. Werz / TU Braunschweig

Viele kennen den Effekt aus der Diskothek, wenn „Schwarzlicht“ Kleidung oder Schrifttafeln zum Leuchten bringt. Der Grund dafür sind so genannte fluoreszierende Farbstoffe. Sie senden einen Teil des Lichts, mit dem sie bestrahlt werden, in etwas anderer Weise zurück und leuchten dadurch. Für Forschung und industrielle Anwendung sind oft besonders große fluoreszierende Moleküle interessant.

Wissenschaftlern des Instituts für Organische Chemie der Technischen Universität Braunschweig ist es gelungen, komplexe Fluorophore und Farbstoffe im nahen Infrarotbereich herzustellen – in drei einfachen Schritten. Ihre Ergebnisse wurden kürzlich in der Fachzeitschrift „Angewandte Chemie“ veröffentlicht.

Um Licht absorbieren und wieder aussenden zu können, werden in den fluoreszierenden Farbstoffmolekülen Elektronen angeregt bzw. Ladungen transportiert. Dabei gilt meistens: Je größer die Moleküle, desto einfacher können Ladungen transportiert werden. Große Moleküle zu bauen, ist aber oft nicht einfach und umfasst normalerweise viele Schritte.

In drei Schritten zu großen Molekülen

Hier haben die Wissenschaftler des Instituts für Organische Chemie angesetzt. Sie haben eine Methode entwickelt, mit der sie komplexe fluoreszierende Moleküle vergleichsweise einfach aufbauen können. Dafür fügen sie in zwei Schritten einzelne Komponenten zusammen (Oligomerisierung). In einem weiteren Schritt entfernen sie gleichzeitig eine große Anzahl von Wasserstoffatomen. Dadurch entsteht beispielsweise aus acht einzelnen Molekülen ein großes Molekül, ein Oktamer.

Komplexität durch Simplizität

Die Ergebnisse der Chemiker können für unterschiedliche Bereiche interessant sein, in denen (fluoreszierende) Farbstoffe eingesetzt werden, beispielsweise in Batterien, Solarzellen oder Bildschirmen. Postdoktorand Dr. Atanu Patra sagt: „Das Interessanteste an unserer Arbeit ist ihre Einfachheit. Wir haben diese komplexen Moleküle mit einfachen Methoden synthetisiert.“ Der Wissenschaftler forscht seit April 2019 in der Arbeitsgruppe von Professor Werz und wird dabei für zwei Jahre durch ein Postdoktoranden-Stipendium der Alexander-von-Humboldt-Stiftung gefördert.

Professor Daniel B. Werz, Professor am Institut für Organische Chemie: „Was wir machen, ist Grundlagenforschung. Unsere Ergebnisse können aber für verschiedenste Anwendungen interessant sein, gerade weil unsere Methode auf drei einfachen Schritten basiert. Gute Chemie muss für mich nicht kompliziert sein, sondern besticht durch Einfachheit. Komplexität durch Simplizität sozusagen, das ist das Beste, was man machen kann.“

Wissenschaftliche Ansprechpartner:

Prof. Dr. Daniel B. Werz
Technische Universität Braunschweig
Institut für Organische Chemie
Hagenring 30
38106 Braunschweig
Tel.: 0531 391-5266
E-Mail: d.werz@tu-braunschweig.de
www.werzlab.de

Originalpublikation:

Daniel B. Werz, Atanu Patra, Lukas J. Patalag und Peter G. Jones: Extended Benzene-Fused Oligo-BODIPYs: In Three Steps to a Series of Large, Arc-Shaped, Near Infrared Dyes. https://doi.org/10.1002/anie.202012335

http://www.tu-braunschweig.de/

Media Contact

Anna Krings Presse und Kommunikation
Technische Universität Braunschweig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Schimpanse in einem tropischen Wald, der genetische Anpassungen zum Überleben zeigt.

Parallele Pfade: Das Verständnis von Malariaresistenz bei Schimpansen und Menschen

Die nächsten Verwandten des Menschen passen sich genetisch an Lebensräume und Infektionen an Überleben des am besten Angepassten: Genetische Anpassungen bei Schimpansen aufgedeckt Görlitz, 10.01.2025. Schimpansen verfügen über genetische Anpassungen,…

Ballaststoffreiche Lebensmittel fördern Darmgesundheit und Antikrebswirkung

Du bist, was du isst – Stanford-Studie verbindet Ballaststoffe mit Modulation von Anti-Krebs-Genen

Die Ballaststofflücke: Ein wachsendes Problem in der amerikanischen Ernährung Ballaststoffe sind bekanntlich ein wichtiger Bestandteil einer gesunden Ernährung, doch weniger als 10 % der Amerikaner konsumieren die empfohlene Mindestmenge. Eine…

RNA-bindendes Protein RbpB reguliert den Stoffwechsel der Darmmikrobiota in Bacteroides thetaiotaomicron.

Vertrauen Sie Ihrem Bauchgefühl – RNA-Protein-Entdeckung für eine bessere Immunität

HIRI-Forscher entschlüsseln Kontrollmechanismen der Polysaccharidverwertung in Bacteroides thetaiotaomicron. Forschende des Helmholtz-Instituts für RNA-basierte Infektionsforschung (HIRI) und der Julius-Maximilians-Universität (JMU) Würzburg haben ein Protein sowie eine Gruppe kleiner Ribonukleinsäuren (sRNAs) in…