Konzertiertes Protonen-Hopping in Wasser

Modell eines Wasserstoffbindungsbrücken-Netzwerks von flüssigem Wasser<br> Abb.: Thomas D. Kühne, JGU<br>

Das Proton, also das positiv geladene Wasserstoffion, bewegt sich in Wasser sehr schnell von einem Wassermolekül zum nächsten, weshalb Wasser eine relativ hohe Leitfähigkeit besitzt. Das Prinzip der Protonenleitung in Wasser ist seit 200 Jahren bekannt und nach seinem Entdecker Theodor Grotthuß als Grotthuß-Mechanismus benannt.

Es geht davon aus, dass nicht ein und dasselbe Proton von einem Molekül zum anderen wandert, sondern dass Bindungen aufgebrochen werden, an denen das eine Proton andockt und dafür verlässt ein anderes Proton das Molekül, um andernorts zu binden. Der daraus resultierende Protonenleitungsmechanismus ähnelt einer Eimerkette, durch die sich die sehr hohe Mobilität der einzelnen Protonen erklären lässt.

Dieses Bild vereinfacht jedoch den Sachverhalt und unterschlägt die Komplexität der Struktur von Wasser. Nun haben Wissenschaftler aus Zürich und Mainz den Mechanismus anhand theoretischer Berechnungen präzisiert und gezeigt, dass die derzeit gültige Vorstellung der Protonenleitung einer Revision bedarf.

„Die Simulation zeigt, dass der Übergang von einem Wassermolekül zum nächsten viel schneller erfolgt als vermutet und dann in eine Ruhephase bis zum nächsten Übergang eintritt“, erläutert Prof. Dr. Thomas D. Kühne vom Institut für Physikalische Chemie der Johannes Gutenberg-Universität Mainz (JGU) die Ergebnisse. Sie wurden am 18. Juli 2013 vorab online im Portal der Fachzeitschrift Proceedings of the National Academy of Sciences veröffentlicht.

„Wir zeigen, dass die Diffusion von Protonen und Hydroxidionen während Phasen intensiver Aktivität mit konzertiertem Protonen-Hopping stattfindet, gefolgt von Phasen der Ruhe“, schreibt Erstautor Ali A. Hassanali von der ETH Zürich in der Veröffentlichung. In dem Bild, das sich die Wissenschaftler von der Protonenleitung nun machen, entspricht das Wasserstoffbrücken-Netzwerk einer Ansammlung von in sich geschlossenen Ringen. Die sich daraus ergebenden Protonen-Ketten dienen in dem Wasserstoffbrücken-Netzwerk als „Fahrbahn“ für lange Protonensprünge über mehrere Wasserstoffbrückenbindungen hinweg. „Die Wassermoleküle tanzen umeinander herum, bis sie eine energetisch günstige Position erreicht haben. Dann erst hüpft das Proton entlang der Leitung zum anderen Molekül“, beschreibt Kühne den Vorgang. Zwischenzeitlich kommt es dadurch kurz zur Bildung von protonierten Wassermolekülen mit drei Protonen.

Neben der Bedeutung für den Protonentransfer in wässrigen Systemen dürften die Ergebnisse auch für wichtige biologische Systeme wie Enzyme und andere Makromoleküle relevant sein.

Veröffentlichung:
Ali A. Hassanali et al.
Proton Transfer through the Water Gossamer
PNAS, 18. Juli 2013
DOI: 10.1073/pnas.1306642110
Weitere Informationen:
Prof. Dr. Thomas D. Kühne
Institut für Physikalische Chemie
Schwerpunkt für Rechnergestützte Wissenschaften
Johannes Gutenberg-Universität Mainz
D 55099 Mainz
Tel. +49 6131 39-23699
E-Mail: kuehne@uni-mainz.de
http://www.tc.uni-mainz.de/
http://www.csm.uni-mainz.de/242.php
Weitere Links:
http://www.pnas.org/content/early/2013/07/17/1306642110.abstract – Abstract
Weitere Informationen:
http://www.uni-mainz.de/presse/57094.php
– Pressemitteilung ;
http://www.pnas.org/content/early/2013/07/17/1306642110.abstract
– Veröffentlichung ;
http://www.tc.uni-mainz.de/
– Theoretische Chemie am Institut für Physikalische Chemie

Media Contact

Petra Giegerich idw

Weitere Informationen:

http://www.uni-mainz.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Schimpanse in einem tropischen Wald, der genetische Anpassungen zum Überleben zeigt.

Parallele Pfade: Das Verständnis von Malariaresistenz bei Schimpansen und Menschen

Die nächsten Verwandten des Menschen passen sich genetisch an Lebensräume und Infektionen an Überleben des am besten Angepassten: Genetische Anpassungen bei Schimpansen aufgedeckt Görlitz, 10.01.2025. Schimpansen verfügen über genetische Anpassungen,…

Ballaststoffreiche Lebensmittel fördern Darmgesundheit und Antikrebswirkung

Du bist, was du isst – Stanford-Studie verbindet Ballaststoffe mit Modulation von Anti-Krebs-Genen

Die Ballaststofflücke: Ein wachsendes Problem in der amerikanischen Ernährung Ballaststoffe sind bekanntlich ein wichtiger Bestandteil einer gesunden Ernährung, doch weniger als 10 % der Amerikaner konsumieren die empfohlene Mindestmenge. Eine…

RNA-bindendes Protein RbpB reguliert den Stoffwechsel der Darmmikrobiota in Bacteroides thetaiotaomicron.

Vertrauen Sie Ihrem Bauchgefühl – RNA-Protein-Entdeckung für eine bessere Immunität

HIRI-Forscher entschlüsseln Kontrollmechanismen der Polysaccharidverwertung in Bacteroides thetaiotaomicron. Forschende des Helmholtz-Instituts für RNA-basierte Infektionsforschung (HIRI) und der Julius-Maximilians-Universität (JMU) Würzburg haben ein Protein sowie eine Gruppe kleiner Ribonukleinsäuren (sRNAs) in…