Lebende Cyanobakterien-Elektrode stellt effizient Strom her

An der Ruhr-Universität testet das Team neue Elektrodentechnik zunächst in kleinem Maßstab. © RUB, Kramer

Isolierte Moleküle nicht langfristig stabil

Auf der Suche nach nachhaltigen Wegen für die Energieproduktion nutzen Forscher immer wieder Mikroorganismen oder aus ihnen extrahierte Biomoleküle, etwa bestimmte Fotosynthese-Proteine. „Isolierte Moleküle sind in der Regel aber nicht auf lange Sicht stabil“, erklärt der Bochumer Forscher Dr. Felipe Conzuelo.

„Ein Vorteil von lebenden Zellen ist, dass sie eine Reparaturmaschinerie besitzen, um Zellschäden zu beseitigen.“ Das System regeneriert sich also selbst. Eine Herausforderung bei der Arbeit mit lebenden Organismen ist jedoch, dass es schwieriger ist, die Elektronen – also letztendlich den Strom – aus der Zelle herauszubekommen und für eine technische Anwendung nutzbar zu machen. Genau das gelang dem Forscherteam nun.

Cyanobakterien besitzen zwei Systeme für die Energieproduktion bei Licht und bei Dunkelheit. Bei Licht findet Fotosynthese statt, wobei Wasserstoff und Kohlendioxid verbraucht werden, um Zuckermoleküle und Sauerstoff zu erzeugen.

Der Prozess setzt eine Elektronentransportkette in Gang, die die Produktion von Energiespeichermolekülen wie ATP antreibt. Bei Dunkelheit werden in der sogenannten Zellatmung die gespeicherten Zuckermoleküle unter Verbrauch von Sauerstoff wieder zerlegt, um Energie zu gewinnen. Auch hier spielt der Elektronentransport eine entscheidende Rolle.

Kleines Molekül transportiert Elektronen aus Zelle

Mit ihrer Cyanobakterien-beschichteten Graphit-Elektrode konnten die Forscher Elektronen aus beiden Prozessen, der Fotosynthese und Zellatmung, ableiten und so einen Stromfluss außerhalb der Zelle generieren – und zwar effizienter als in früheren Systemen.

Sie fanden heraus, dass ein kleines lösliches Molekül aus den Zellen austritt und die Elektronen zur Elektrodenoberfläche transportiert. Das gelang jedoch nur in ausreichendem Maße, wenn die Gruppe die Zellen sanft vorbehandelte, bevor sie auf die Elektrode aufgetragen wurden. Zu diesem Zweck wurden die Zellen etwas gepresst, sodass die Zellwand nicht mehr vollständig intakt war.

„Es ist nach unserem Wissensstand das erste Mal, dass ein solches Vermittlermolekül gefunden wurde, welches aus den lebenden Zellen selbst stammt, deren Zellwand durchwandern kann und so Elektronen nach außen transportieren kann“, sagt Dr. Fangyuan Zhao vom Zentrum für Elektrochemie. Um welche Substanz es sich dabei genau handelt, ist noch unbekannt. Die Analysen ergaben jedoch, dass es ein relativ kleines, wasserlösliches Molekül sein muss, das Zellwände und Membranen passieren kann.

„Wir glauben, dass das Cyanobakterien-System das Potenzial hat, eine grüne Energiequelle zu werden“, resümiert Prof. Dr. Wolfgang Schuhmann, Leiter des Bochumer Lehrstuhls für Analytische Chemie. „Mit einigen Modifikationen sollte es in der Lage sein, lichtgetrieben Strom über eine lange Zeit zu produzieren – weil es alles mitbringt, um sich immer wieder selbst zu regenerieren.“

Förderung

Die Arbeiten wurden finanziell unterstützt durch die Israel Science Foundation (Grantnummer: 152/11), die US-Israel Binational Science Foundation (Grantnummer: 2011556) und die Deutsche Forschungsgemeinschaft im Rahmen einer Deutsch-Israelischen Projektkooperation (Projektnummer: LU315/17-1), für die das Team vom Zentrum für Elektrochemie mit dem Bochumer Lehrstuhl für Biochemie der Pflanzen (Prof. Dr. Matthias Rögner), der Arbeitsgruppe Photobiotechnologie der Ruhr-Universität (Prof. Dr. Thomas Happe) sowie dem Max-Planck-Institut für Chemische Energiekonversion (Prof. Dr. Wolfgang Lubitz) zusammenarbeitet.

Originalveröffentlichung

Gadiel Saper et al.: Live cyanobacteria produce photocurrent and hydrogen using both the respiratory and photosynthetic systems, in: Nature Communications, 2018, DOI: 10.1038/s41467-018-04613-x

Pressekontakt

Prof. Dr. Wolfgang Schuhmann
Analytische Chemie
Zentrum für Elektrochemie
Fakultät für Chemie und Biochemie
Ruhr-Universität Bochum
Tel.: 0234 32 26200
E-Mail: wolfgang.schuhmann@rub.de

Media Contact

Dr. Julia Weiler idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.ruhr-uni-bochum.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Sensoren für „Ladezustand“ biologischer Zellen

Ein Team um den Pflanzenbiotechnologen Prof. Dr. Markus Schwarzländer von der Universität Münster und den Biochemiker Prof. Dr. Bruce Morgan von der Universität des Saarlandes hat Biosensoren entwickelt, mit denen…

3D-Tumormodelle für Bauchspeicheldrüsenkrebsforschung an der Universität Halle

Organoide, Innovation und Hoffnung

Transformation der Therapie von Bauchspeicheldrüsenkrebs. Bauchspeicheldrüsenkrebs (Pankreaskarzinom) bleibt eine der schwierigsten Krebsarten, die es zu behandeln gilt, was weltweite Bemühungen zur Erforschung neuer therapeutischer Ansätze anspornt. Eine solche bahnbrechende Initiative…

Leuchtende Zellkerne geben Schlüsselgene preis

Bonner Forscher zeigen, wie Gene, die für Krankheiten relevant sind, leichter identifiziert werden können. Die Identifizierung von Genen, die an der Entstehung von Krankheiten beteiligt sind, ist eine der großen…