Mainzer Physiker gewinnen neue Erkenntnisse über Nanosysteme mit kugelförmigen Einschränkungen

Bipolare Struktur aus steifen Polymeren bei mittlerer Dichte Abb./©: Arash Nikoubashman, JGU

Mainzer Physiker um Prof. Dr. Kurt Binder und Dr. Arash Nikoubashman haben erstmals untersucht, wie sich steife Polymere in kugelförmigen Gefäßen anordnen und wie sich diese Anordnung unter verschiedenen Bedingungen verändert.

Solche Nanosysteme haben ein großes Potenzial für Anwendungen in der gezielten Pharmakotherapie und bei der Herstellung von maßgeschneiderten Nanoteilchen. Des Weiteren gibt die untersuchte Problemstellung wichtige Aufschlüsse über biologische Systeme, bei denen die Packung von langen Molekülen relevant ist – wie zum Beispiel die Lagerung doppelsträngiger DNS in Bakteriophagen oder die Selbstanordnung von Aktinfilamenten, aus deren Netzwerk der Zellcortex aufgebaut ist, in Zellen.

Die Simulationen der Arbeitsgruppe haben gezeigt, dass sich völlig flexible Polymerketten zunächst gleichmäßig in der Kugel verteilen und die Kugeloberfläche unstrukturiert ist. Sobald die Steifigkeit der Ketten erhöht wurde, stellten sich die Polymere selbstständig parallel zueinander auf, wobei die Kettenenden auf einer gemeinsamen Äquatorialebene lagen.

Zur gleichen Zeit formten die Polymere komplexe Strukturen auf der Kugeloberfläche: bei niedrigen Dichten und mittlerer Steifigkeit wurden Oberflächenstrukturen mit zwei gegenüberliegenden Polen beobachtet (Abb. 1), wie sie zum Beispiel von einem Globus oder einer Zwiebel bekannt sind. Bei höheren Dichten und sehr steifen Ketten haben sich dahingegen tennisballartige Strukturen mit vier Polen ausgebildet (Abb. 2).

Dieses überaus interessante Verhalten resultiert aus dem komplexen Wechselspiel zwischen der Packung und der Verbiegung von Polymerketten: Einerseits ist es aus entropischen Gründen vorteilhaft für die steifen Polymere, sich parallel zueinander aufzustellen (diese sogenannte nematische Phase ist beispielsweise ausschlaggebend für die Funktion von Flüssigkristallen).

Andererseits verhindert die kugelförmige Einschließung solch eine parallele Anordnung im ganzen System, sodass sich Ketten in der Nähe der Kugeloberfläche verbiegen müssen. Die resultierenden Strukturen sind somit der Kompromiss aus diesen Einschränkungen.

Mit diesen Simulationen ist es erstmals gelungen, ein solches Verhalten steifer Polymere zu beobachten. Die Mainzer Physiker sind zuversichtlich, dass diese Arbeit zukünftig dazu beitragen wird, sowohl natürliche als auch synthetische Nanosysteme besser zu verstehen, bei denen kugelförmige Einschränkungen wichtig sind.

Abbildungen:
http://www.uni-mainz.de/bilder_presse/08_physik_polymere_in_kugeln_01.jpg
Bipolare Struktur aus steifen Polymeren bei mittlerer Dichte
Abb./©: Arash Nikoubashman, JGU

http://www.uni-mainz.de/bilder_presse/08_physik_polymere_in_kugeln_02.jpg
Quadrupolare Tennisball-Struktur aus steifen Polymeren bei hoher Dichte
Abb./©: Arash Nikoubashman, JGU

Veröffentlichung:
Arash Nikoubashman et al.
Semiflexible Polymers in Spherical Confinement: Bipolar Orientational Order Versus Tennis Ball States
Physical Review Letters, 26. Mai 2017
DOI: 10.1103/PhysRevLett.118.217803
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.217803

Weitere Informationen:
Dr. Arash Nikoubashman
Institut für Physik
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-27254
Fax +49 6131 39-20496
E-Mail: anikouba@uni-mainz.de
http://www.komet331.physik.uni-mainz.de/nikoubashman.php

Media Contact

Petra Giegerich idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.uni-mainz.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Hochleistungsfähiger Ceriumoxid-Thermoschalter für effiziente Wärmeregelung und nachhaltige Energiesysteme.

Langlebig, Effizient, Nachhaltig: Der Aufstieg von Ceriumoxid-Thermoschaltern

Bahnbrechende Thermoschalter auf Basis von Ceriumoxid erreichen bemerkenswerte Leistungen und revolutionieren die Steuerung des Wärmeflusses mit nachhaltiger und effizienter Technologie. Ceriumoxid-Thermoschalter revolutionieren die Steuerung des Wärmeflusses Thermoschalter, die den Wärmeübergang…

Industrielle Roboter senken CO₂-Emissionen in der Fertigung für nachhaltigen Welthandel.

Wie industrielle Roboter Emissionen in der globalen Fertigung reduzieren

Eine neue Studie untersucht die Schnittstelle zwischen industrieller Automatisierung und ökologischer Nachhaltigkeit, wobei der Schwerpunkt auf der Rolle industrieller Roboter bei der Reduzierung der Kohlenstoffintensität von Exporten aus der Fertigung…

3D-gedruckte Biokeramische Transplantate für personalisierte kraniomaxillofaziale Knochenrekonstruktion.

Patienten können durch präzise, personalisierte Biokeramische Transplantate heilen

Eine kürzlich veröffentlichte Übersichtsarbeit revolutioniert die Landschaft der craniomaxillofazialen Knochenregeneration durch die Einführung personalisierter biokeramischer Transplantate. Diese bahnbrechende Forschung untersucht die Herstellung und das klinische Potenzial synthetischer Transplantate, die mittels…