Man nehme … Backpulver!

Die Entwicklung der Katalysatoren erfolgt zunächst im Labormaßstab. Anschließend wird das funktionierende Katalysatorsystem in einen größeren Pilotmaßstab übertragen. (Symbolbild)
(c) LIKAT/Gohlke

Einfache Zutaten für einen chemischen Wasserstoffspeicher.

Noch immer suchen Forscher nach einem idealen Weg zur sicheren und stabilen Speicherung von Wasserstoff, dem Hoffnungsträger der Energiewende. Wie sich dieses flüchtige und brennbare Gas gefahrlos und mit einfachen „Zutaten“ bändigen lässt, darüber berichten Forscher vom Leibniz-Institut für Katalyse in Rostock, LIKAT, und der Firma H2APEX in der jüngsten Ausgabe von NATURE COMMUNICATION.*
Sie entwickelten gemeinsam ein homogenes Katalysatorsystem, mit dem sie Wasserstoff (H2) an Kaliumbikarbonat binden und auf diese Weise sicher und stabil chemisch speichern können. Bikarbonat ist ein Salz der Kohlensäure, landläufig als Backpulver oder Natron bekannt.

Mit Bikarbonat reagiert der Wasserstoff im beschriebenen System in Gegenwart eines Ruthenium-Katalysators zu Formiat, einem ebenfalls harmlosen Salz, und zwar dem der Ameisensäure. Der Clou des Ganzen: „Den im Formiat gespeicherten Wasserstoff können wir jederzeit wieder freisetzen – mit demselben Katalysator, im selben System“, erläutern Dr. Rui Sang und Doktorandin Carolin Stein, beides Erstautoren der wissenschaftlichen Publikation, in einem Gespräch. Solch eine umkehrbare Reaktion nennt man reversibel.

Laut Forschungsgruppenleiter Dr. Henrik Junge arbeitet das System stabil bei Temperaturen um 60 Grad Celsius. Die Reaktion läuft in einer Lösung ab, in der sich alle beteiligten chemischen Stoffe befinden: Wasserstoff und Bikarbonat sowie der Katalysator, der die Reaktion erst ermöglicht und im Prozess selbst nicht verbraucht wird. Im Fall der neuesten Publikation basiert er auf Ruthenium und ist kommerziell erhältlich. Am Ende enthält diese Lösung auch das neugebildete Formiat – den eigentlichen H2-Speicher.

Auch technisch ist das System gut zu steuern, sagt Dr. Sponholz, Forschungsleiter bei H2APEX: „Je nachdem, mit welchem Druck ich den Wasserstoff in das System gebe, wird das Gas entweder an das Bikarbonat zu Formiat gebunden oder die Reaktion kehrt sich um und das Formiat gibt den Wasserstoff wieder frei.“

Einfach zu lagern und zu transportieren

Wasserstoff spielt eine Hauptrolle in alternativen Szenarien der Energieversorgung. Und als Speichermedien für eine künftige Wasserstoffwirtschaft werden u.a. Methanol, Ammoniak und Methan diskutiert. Ameisensäuresalze sind gegenüber diesen Speichermedien im Vorteil, was die Giftigkeit der Stoffe und den Energieverbrauch angeht. Formiat ließe sich einfach in Kunststoffcontainern lagern und in Tanklastern transportieren. Henrik Junge sagt: „Im Grunde wie Milch, Bier oder Diesel.“

Zusammen mit dem Bikarbonat bildet das Formiat ein Energiesystem, das wie eine Batterie über Wasserstoff be- oder entladen wird. Ein solches System eignet sich tatsächlich für den Einsatz vor allem im lokalen, etwa ländlichen Bereich. Dort kann Windkraft oder Solarenergie in Phasen, wo mehr Strom bereitgestellt als abgenommen wird, über die Elektrolyse grünen Wasserstoff produzieren, der dann als Formiat gespeichert wird.
In der Kooperation von LIKAT und H2APEX geht es den Forschern u.a. darum, im Formiat möglichst viel Wasserstoff unterzubringen. Beeinflusst wird dies durch Speicherdichte, Löslichkeit und „Molarität“ des verwendeten Salzes, Eigenschaften, die wiederum von seinem „Gegenion“ abhängen. Denn Salze bestehen üblicherweise aus Ionen gegensätzlicher Ladung, dem Kation und dem Anion.

Nach Tests einiger Kandidaten und Abwägung der Vor- und Nachteile hat man sich für Kalium entschieden, sagt Dr. Peter Sponholz. Das Salz, das in der „Batterie“ mit Wasserstoff beladen wird, heißt also präzise Kaliumbikarbonat. Nebenbei: Backpulver für die Küche enthält allermeist Natriumbikarbonat.

40 Zyklen für einen klimaneutralen Prozess

Der Prozess ist, darauf legen die Autoren Wert, CO2-neutral. Üblicherweise wird bei der Rückgewinnung von Wasserstoff ein Teil des Bikarbonats zu CO2 zersetzt und freigegeben, erläutert Carolin Stein. „Unser System hingegen hält das CO2 dauerhaft fest.“ So kann aus diesem Speichersystem reiner Wasserstoff gewonnen werden, welcher direkt, ohne weitere Aufreinigung, in einer Brennstoffzelle genutzt werden kann.
In ihrem NATURE COMMUNICATION-Paper berichten die Autoren von 40 aufeinanderfolgenden Zyklen der Wasserstoffspeicherung und -abgabe über einen Zeitraum von sechs Monaten. Unter Verwendung minimaler Mengen des Ruthenium-Katalysators im ppm-Bereich produzierten die Chemiker mit ihrer Laboranlage 50 Liter Wasserstoff mit einer durchschnittlichen Reinheit von 99,5 Prozent.

Künftiger Demonstrator am Technikum

Das Unternehmen H2APEX in Rostock-Laage verwendet u.a. diese Ergebnisse, um einen größeren Demonstrator zu bauen, wozu der Industriepartner auch das Technikum des Instituts nutzt. Wenn alles wie geplant verläuft, wird die entsprechende Anlage bis Ende 2025 kommerzialisiert, und das chemische Symbol für Wasserstoffatome H, bedeutet dann auch H wie Hoffnung für die Energiewende.

*Nature Communication: https://doi.org/10.1038/s41467-024-51658-2

Wissenschaftliche Ansprechpartner:

Prof. Dr. Matthias Beller
Forschungsbereichsleiter „Angewandte Homogenkatalyse“
Matthias.Beller@catalysis.de

Dr. Henrik Junge
Themenleiter “Katalyse für Energietechnologien“
Henrik.Junge@catalysis.de

Originalpublikation:

Nature Communications: https://doi.org/10.1038/s41467-024-51658-2
R. Sang, C. A. M. Stein, T. Schareina, Y. Hu, A. Léval, J. Massa, V. Turan, P. Sponholz, D. Wei, R. Jackstell, H. Junge, M. Beller, Nat. Commun. 2024, 15, 7268. Development of a practical formate/bicarbonate energy system.

Weitere Informationen:

https://www.catalysis.de/forschung/angewandte-homogenkatalyse/katalyse-fuer-ener…

Media Contact

Dr. Martha Höhne Pressestelle
Leibniz-Institut für Katalyse

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Energie zu Vitamin

Mikroben produzieren Folsäure aus einfachen Grundzutaten. Biotechnologisches Team der Universität Tübingen erhält wertvolles Nebenprodukt bei der Proteinherstellung – Beitrag zur Ernährung einer wachsenden Weltbevölkerung unter Umgehung der Viehhaltung. Man nehme…

Die vierte Dimension im 3D-Druck

Prof. Dr.-Ing. Christian Haase leitet das neue Fachgebiet „Werkstoffe für die Additive Fertigung“ an der TU Berlin im Rahmen einer Kooperation mit dem Werner-von-Siemens Centre for Industry and Science. Obwohl…

Fruchtfliegen mit erhöhter Mutationsrate

Ein Durchbruch in der Fruchtfliegengenetik durch die Nutzung von Mutationen. Eine bahnbrechende Technik, TF-High-Evolutionary (TF-HighEvo), ermöglicht eine groß angelegte Bewertung von de-novo-Mutationen in mehrzelligen Organismen. Diese Methode, die in Zusammenarbeit…

Partner & Förderer