Mechanische Multitalente in biologischen Zellen

Mikroskopische Kügelchen bewegen sich mit einem Netzwerk aus Intermediärfilamenten. Durch Analyse der Bewegung können Schlüsse auf die Netzwerk- und Filamenteigenschaften gezogen werden.
Dr. Markus Osterhoff

Göttinger Forschungsteam untersucht spezielle Proteinstrukturen.

Menschliche Körperzellen sind dauerhaft verschiedensten mechanischen Belastungen ausgesetzt. So müssen Herz und Lunge lebenslangem Ausdehnen und Zusammenziehen standhalten und Immunzellen sind stark verformbar, um sich durch den Körper zu bewegen. Dabei spielen spezielle Proteinstrukturen, sogenannte Intermediärfilamente, eine wichtige Rolle. Forscherinnen und Forschern der Universität Göttingen ist es jetzt erstmals gelungen, genau zu messen, welche physikalischen Effekte die Eigenschaften der einzelnen Filamente bestimmen und welche besonderen Eigenschaften erst durch das Zusammenspiel vieler Filamente in Netzwerken auftreten. Die Ergebnisse sind in der Fachzeitschrift PNAS erschienen.

Eines der wichtigsten Systeme, die Zellen zu Verfügung haben, um ihre Stabilität, Dehnbarkeit und Widerstandsfähigkeit gegen mechanische Belastung zu gewährleisten, ist das Zellskelett. Gebildet wird es überwiegend aus drei Sorten fadenartiger Proteinstrukturen, die jeweils verschiedene Funktionen und Eigenschaften besitzen. Zu diesen Proteinstrukturen gehören die sogenannten Intermediärfilamente. Sie bilden Netzwerke, die sich sehr stark verformen lassen, ohne Schaden zu nehmen: die Stoßdämpfer der Zellen. Gleichzeitig können diese Intermediärfilamente bei sehr starken Verformungen als inneres Halteseil dienen, das eine Zelle davor bewahrt, zerrissen zu werden.

Peter Nietmann, Prof. Dr. Andreas Janshoff, Prof. Dr. Stefan Klumpp, Prof. Dr. Sarah Köster, Anna Schepers, Charlotta Lorenz (von links).
Dr. Markus Osterhoff

Um diese Eigenschaften zu untersuchen, hat das Göttinger Team im Labor künstliche Netzwerke aus Intermediärfilamenten hergestellt und anhand der Bewegung von kleinen eingebetteten Kügelchen untersucht, wie sich das gesamte Netzwerk verhält. In den Netzwerken überlagern sich allerdings verschiedene Effekte: Das Dehnungsverhalten der einzelnen Filamente einerseits, und die Kraft und Häufigkeit, mit der die Filamente an Kreuzungspunkten wechselwirken, andererseits. Dazu haben die Forscherinnen und Forscher diese Aspekte getrennt untersucht, indem sie zunächst einzelne Filamente gestreckt haben, um die Kräfte zu bestimmen, die für die Streckung nötig sind.

Anschließend haben sie zwei der Filamente in einer gekreuzten Anordnung miteinander in Kontakt gebracht und durch Bewegung eines der Filamente an der Kontaktstelle gezogen. Durch diese Anordnung wie bei einer „mikroskopischen Geige“ haben sie genau bestimmt, mit welchen Kräften und welcher Häufigkeit die Filamente aneinanderbinden. Diese Ergebnisse konnten sie zusätzlich mit Computersimulationen stützen. Zudem hat das Team beobachtet, dass sich die Netzwerke über einen erstaunlich langen Zeitraum hinweg verändern und über eine Woche hinweg langsam „altern“, weil die Filamente immer länger werden oder sich zu Bündeln zusammenschließen.

„Alle diese Beobachtungen erweitern unser Verständnis dafür, warum unsere Zellen so unglaublich robust und trotzdem flexibel sind“, erklärt die Erstautorin der Studie, Anna Schepers vom Institut für Röntgenphysik der Universität Göttingen. „Zudem hilft ein klareres Bild von Intermediärfilamenten zu verstehen, wie und wieso sich die mechanischen Eigenschaften von Zellen zum Beispiel bei der Wundheilung oder bei metastasierenden Krebszellen ändern“, ergänzt die Leiterin der Studie, Prof. Dr. Sarah Köster.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Sarah Köster
Georg-August-Universität Göttingen
Institut für Röntgenphysik
Friedrich-Hund-Platz 1, 37077 Göttingen
Telefon: 0551 / 39 29429
sarah.koester@phys.uni-goettingen.de
www.uni-goettingen.de/koesterlab

Originalpublikation:

Anna V. Schepers, Charlotta Lorenz, Peter Nietmann, Andreas Janshoff, Stefan Klumpp, Sarah Köster. Multiscale mechanics and temporal evolution of vimentin intermediate filament networks. Proc. Natl. Acad. Sci. 2021. Doi: https://doi.org/10.1073/pnas.2102026118

http://www.uni-goettingen.de/

Media Contact

Thomas Richter Öffentlichkeitsarbeit
Georg-August-Universität Göttingen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neuartige biomimetische Sprechventil-Technologie

Ein Forschungsteam der Universität und des Universitätsklinikums Freiburg hat eine neuartige biomimetische Sprechventil-Technologie entwickelt, die die Sicherheit für Patient*innen mit Luftröhrenschnitt erheblich erhöhen könnte. Die Herausforderung: Bei unsachgemäßem Gebrauch von…

Kollege Roboter soll besser sehen

CREAPOLIS-Award für ISAT und Brose… Es gibt Möglichkeiten, Robotern beizubringen, in industriellen Produktionszellen flexibel miteinander zu arbeiten. Das Projekt KaliBot erreicht dabei aber eine ganz neue Präzision. Prof. Dr. Thorsten…

Neue einfache Methode für die Verwandlung von Weichmagneten in Hartmagnete

Ein Forscherteam der Universität Augsburg hat eine bahnbrechende Methode entdeckt, um einen Weichmagneten in einen Hartmagneten zu verwandeln und somit magnetische Materialien zu verbessern: mithilfe einer moderaten einachsigen Spannung, also…