Mikroorganismen bilden elementaren Kohlenstoff

Probennahme aus den heißen Sedimenten der Hydrothermalquellen des Guaymas Beckens vor der mexikanischen Küste. Unter den weiß-gelben und orangefarbenen Bakterienmatten leben die Erdgas abbauenden Konsortien.
(c) Andreas Teske, Univ. of North Carolina (USA)

Rein biologisch: Forschende identifizieren einen neuen Weg zur Bildung von reinem Kohlenstoff durch Mikroorganismen.

Kohlenstoff kommt auf der Erde in verschiedenen Strukturen und Formen vor. Elementarer Kohlenstoff entsteht meist durch hohen Druck und hohe Temperaturen. Nun haben Forschende erstmals Mikroorganismen identifiziert, die elementaren Kohlenstoff bilden. Das Team, dem auch Dr. Gunter Wegener vom MARUM – Zentrum für Marine Umweltwissenschaften der Universität Bremen und dem Max-Planck-Institut für Marine Mikrobiologie Bremen angehört, hat nun seine Ergebnisse dazu in der Zeitschrift Science Advances veröffentlicht.

Das Leben auf der Erde basiert auf Kohlenstoff. Im Laufe der Evolution haben Lebewesen erlernt, eine große Menge unterschiedlicher Kohlenstoffverbindungen zu bilden und verarbeiten. So ist Kohlenstoff der Angelpunkt der meisten biologisch erzeugten organischen Verbindungen wie Proteine, Kohlenhydrate, Fette und DNA. All diese Verbindungen enthalten neben Kohlenstoff viele weitere Elemente wie Wasserstoff, Stickstoff oder Sauerstoff.

Elementarer Kohlenstoff wird auf der Erde ohne das Zutun von Leben aus organischen Kohlenstoffverbindungen gebildet, wenn große Hitze und Druck alle anderen Elemente wie Wasserstoff und Stickstoff austreiben. So wird beispielsweise aus Holz tief im Boden bei erhöhten Temperaturen erst Kohle, dann bilden sich mit weiter zunehmendem Druck und steigender Temperatur reine Kohlenstoffverbindungen wie Anthrazit und Graphit. Dies sind kristalline Formen des Kohlenstoffs. Werden Holz, Gas oder Öl verbrannt, bildet sich Ruß, eine weitgehend ungeordnete Form des Kohlenstoffs. Dass Lebewesen selbst elementaren Kohlenstoff bilden, war bisher nicht bekannt.

Der Bremer Wissenschaftler Dr. Gunter Wegener kultiviert seit mehr als 15 Jahren Mikroorganismen, die Methan ohne Sauerstoff verbrauchen, um Energie zu gewinnen. Diese den Archaeen zugerechneten Mikroorganismen leben mit bakteriellen Partnern in einer Symbiose. Viel Energie ist aus diesem Prozess für beide Partner nicht herauszuholen, und so wachsen die Konsortien mit für Mikroorganismen sehr langen Verdoppelungszeiten von mehreren Monaten. Schon vor längerer Zeit haben nun Forschende festgestellt, dass die mikrobiellen Konsortien ungewöhnlich dunkel, geradezu schwarz sind. Ein Teil dieser schwarzen Masse wurde schon früh als Metallsulfide beschrieben. Diese bilden sich aus dem zum Nährmedium hinzugesetzten Eisen und dem durch die Partnerbakterien produzierten Sulfid.

Wegeners Kolleg:innen Dr. Kylie Allen und Prof. Robert White an der Virginia Tech (USA) sind ständig auf der Suche nach neuen Biomolekülen und deren Funktionen. Auf ihrer Suche extrahierten sie auch methanoxidierende Kulturen aus dem Labor von Gunter Wegener mit organischen Lösungsmitteln. Zurück blieb eine schwarze Masse, die auch durch starke Säuren und Basen nicht gelöst werden konnte. „Erst waren wir ratlos, was diese schwarze Masse wohl war“, erklärt Robert White. „Dann nutzten wir andere Methoden, um diesen Stoff als Festphase zu analysieren. Dabei fanden wir heraus, dass es sich um nahezu reinen Kohlenstoff handelte. Dieser Kohlenstoff liegt gänzlich ungeordnet vor, wir sprechen daher auch von amorphem Kohlenstoff.“ Woher stammte dieser elementare Kohlenstoff? Eine rein chemische Herkunft hatte das Team ausgeschlossen. Nun fütterten sie die Kultur mit Substraten mit isotopisch markiertem Kohlenstoff, der im Abbauprozess verfolgt werden kann, und analysierten den gebildeten Kohlenstoff. „So konnten wir nachweisen, dass tatsächlich die methanoxidierenden Archaeen für die Bildung des elementaren Kohlenstoffs verantwortlich sind“, sagt Gunter Wegener.

Als nächsten Schritt untersuchten die Forschenden die nächsten Verwandten der Methanoxidierer, die methan-bildenden Archaeen – auch Methanogene genannt. „Wenn auch nicht in dem gleichen Maße, erzeugten viele der getesteten Stämme ebenfalls elementaren Kohlenstoff“, sagt Robert White.

Die Studie erzeugt jedoch im Moment mehr neue Fragen als Antworten. Etwa: Wie wird dieser Kohlenstoff gebildet? Die Bildung von elementaren Kohlenstoff braucht normalerweise hohen Druck und hohe Temperaturen. Beides hat es in den Kulturen nicht gegeben. „Diese Bildungsweise von elementarem Kohlenstoff durch Lebewesen ist uns Wissenschaftlern komplett neu. In den Archaeen müssen bisher völlig unbekannte Reaktionen am Werk sein“, erklärt Kylie Allen, die Erstautorin der Studie. „Noch wissen wir überhaupt noch nicht, welche biochemischen Reaktionen und Enzyme hier am Werk sind.“

Auch das Warum ist noch nicht geklärt. „Elementarer Kohlenstoff ist ein guter elektrischer Leiter. Womöglich ist der Kohlenstoff der Schlüssel zur Symbiose zwischen den Archaeen und ihren Partnern“, mutmaßt Gunter Wegener. Über Kohlenstoff-basierte Verbindungen könnten elektrische Ladungen bestens transportiert werden. Auch ist gänzlich ungeklärt, wieviel elementarer Kohlenstoff durch Mikroorganismen in der Natur gebildet wird. „Weil der Kohlenstoff in Sedimenten abgelagert wird und dort über lange Zeiträume bleibt, könnten unsere Ergebnisse zudem auf eine bislang unbekannte, natürliche Kohlenstoffsenke hinweisen.“ Das Team wird den offenen Fragen auf den Grund gehen, unter anderem im Rahmen des Exzellenzclusters „Der Ozeanboden – unerforschte Schnittstelle der Erde“, der am MARUM angesiedelt ist.

Das MARUM gewinnt grundlegende wissenschaftliche Erkenntnisse über die Rolle des Ozeans und des Meeresbodens im gesamten Erdsystem. Die Dynamik des Ozeans und des Meeresbodens prägen durch Wechselwirkungen von geologischen, physikalischen, biologischen und chemischen Prozessen maßgeblich das gesamte Erdsystem. Dadurch werden das Klima sowie der globale Kohlenstoffkreislauf beeinflusst und es entstehen einzigartige biologische Systeme. Das MARUM steht für grundlagenorientierte und ergebnisoffene Forschung in Verantwortung vor der Gesellschaft, zum Wohl der Meeresumwelt und im Sinne der Nachhaltigkeitsziele der Vereinten Nationen. Es veröffentlicht seine qualitätsgeprüften, wissenschaftlichen Daten und macht diese frei zugänglich. Das MARUM informiert die Öffentlichkeit über neue Erkenntnisse der Meeresumwelt, und stellt im Dialog mit der Gesellschaft Handlungswissen bereit. Kooperationen des MARUM mit Unternehmen und Industriepartnern erfolgen unter Wahrung seines Ziels zum Schutz der Meeresumwelt.

Wissenschaftliche Ansprechpartner:

Dr. Gunter Wegener
Organische Geochemie, Projektleiter „Alkane Oxidizing Archaea“
MARUM – Zentrum für Marine Umweltwissenschaften und Max-Planck-Institut für Marine Mikrobiologie Bremen
Telefon: 0421 2028 8670
E-Mail: gwegener@marum.de

Originalpublikation:

Kylie D. Allen, Gunter Wegener, D. Matthew Sublett Jr, Robert J. Bodnar, Xu Feng, Jenny Wendt, Robert H. White: Biogenic formation of amorphous carbon by anaerobic methanotrophs and select methanogens. Science Advances 2021. DOI: 10.1126/sciadv.abg9739

Weitere Informationen:

http://www.marum.de

Media Contact

Ulrike Prange Pressestelle
MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Lange angestrebte Messung des exotischen Betazerfalls in Thallium

… hilft bei Zeitskalenbestimmung der Sonnenentstehung. Wie lange hat eigentlich die Bildung unserer Sonne in ihrer stellaren Kinderstube gedauert? Eine internationale Kollaboration von Wissenschaftler*innen ist einer Antwort nun nähergekommen. Ihnen…

Soft Robotics: Keramik mit Feingefühl

Roboter, die Berührungen spüren und Temperaturunterschiede wahrnehmen? Ein unerwartetes Material macht das möglich. Im Empa-Labor für Hochleistungskeramik entwickeln Forschende weiche und intelligente Sensormaterialien auf der Basis von Keramik-Partikeln. Beim Wort…

Klimawandel bedroht wichtige Planktongruppen im Meer

Erwärmung und Versauerung der Ozeane stören die marinen Ökosysteme. Planktische Foraminiferen sind winzige Meeresorganismen und von zentraler Bedeutung für den Kohlenstoffkreislauf der Ozeane. Eine aktuelle Studie des Forschungszentrums CEREGE in…