Mit mRNA zu neuer Muskelkraft

Die Forscher*innen schleusten CRISPR/Cas9 mithilfe von mRNA in die Muskelstammzellen. Nach der Genomeditierung verschmolzen die Stammzellen zu mehrkernigen Fasern (Myotuben). In grün ist eine schwere Kette Myosin zu sehen; in blau die Zellkerne.
Bild: AG Spuler, MDC

Mutationen, die zu Muskelschwund führen, lassen sich mit der Genschere CRISPR/Cas9 reparieren. Ein Team um die ECRC-Forscherin Helena Escobar hat das Werkzeug jetzt erstmals mit mRNA in menschliche Muskelstammzellen eingeschleust. Damit ist eine Methode gefunden, die sich therapeutisch nutzen lässt.

Es ist nur eine winzige Veränderung im Genom, die dennoch fatale Effekte hat: Muskeldystrophien werden fast immer durch ein einzelnes fehlerhaftes Gen ausgelöst. So unterschiedlich die Mutationen bei den rund fünfzig bekannten Formen dieser Erkrankungen sind, führen sie letztendlich alle zu einem sehr ähnlichen Ergebnis. „Aufgrund des Genfehlers verändern sich der Aufbau und die Funktion der Muskeln, so dass die Erkrankten einen fortschreitenden Muskelschwund erleiden“, erläutert Professorin Simone Spuler, die Leiterin der Arbeitsgruppe Myologie am Experimental and Clinical Research Center (ECRC), einer gemeinsamen Einrichtung des Berliner Max-Delbrück-Centrums für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC) und der Charité – Universitätsmedizin Berlin. Ist beispielsweise die Atem- oder Herzmuskulatur betroffen, kann die Krankheit tödlich enden.

Bei Mäusen hat sich die Methode schon bewährt

Heilbar sind Muskeldystrophien bislang nicht. Genau das versuchen Spuler und ihr Team jedoch zu ändern. Ihre jüngste Publikation, die in der Fachzeitschrift „Molecular Therapy Nucleic Acids“ erschienen ist, macht den Weg frei für eine Studie, bei der eine am ECRC entwickelte Therapie erstmals an Patientinnen und Patienten mit erblichem Muskelschwund getestet werden soll. „Wir verfolgen schon seit Jahren die Idee, erkrankten Menschen Muskelstammzellen zu entnehmen, die veränderten Gene mithilfe der Genschere CRISPR/Cas9 zu reparieren und die so behandelten Zellen zurück in die Muskeln zu injizieren, damit sie sich dort vermehren und neues Muskelgewebe bilden“, erläutert Dr. Helena Escobar, Postdoktorandin in Spulers Arbeitsgruppe und gemeinsam mit ihr Letztautorin der aktuellen Arbeit.

Vor einiger Zeit konnten die Forscher*innen bereits zeigen, dass das Verfahren bei Mäusen, die an Muskelschwund leiden, funktioniert. „Unsere Methode hatte bisher allerdings einen Haken“, sagt Escobar: „Wir haben die Bauanleitung für die Genschere mithilfe von Plasmiden – das sind ringförmige, doppelsträngige DNA-Moleküle aus Bakterien – in die Stammzellen eingeführt.“ Plasmide könnten sich aber ungewollt in das ebenfalls doppelsträngige Genom der menschlichen Zellen integrieren und dann zu unerwünschten, wenig abschätzbaren Effekten führen. „Patientinnen und Patienten hätten wir so daher nicht behandeln können“, sagt Escobar.

Gendefekte werden gezielt korrigiert

Das Team machte sich daher auf die Suche nach einer besseren Alternative: Gefunden hat es sie in Form von mRNA, jenen einsträngigen Erbgutmolekülen, die zuletzt vor allem als wesentlicher Bestandteil zweier Corona-Impfstoffe von sich reden gemacht haben. „In den Impfstoffen enthalten die mRNA-Moleküle die genetische Information für den Aufbau des Spike-Proteins des Virus, mit dem der Erreger in menschliche Zellen eindringt“, erläutert Christian Stadelmann, Doktorand in Spulers Arbeitsgruppe. Neben Silvia Di Francescantonio aus dem gleichen Team ist er einer der beiden Erstautor*innen der Studie. „Für unsere Zwecke nutzen wir mRNA-Moleküle, die die Bauanleitung für die Genschere enthalten.“

Um die mRNA in die Stammzellen hineinzuschleusen, wendeten die Forscher*innen ein Verfahren namens Elektroporation an, bei dem die Zellmembranen vorübergehend für größere Moleküle durchlässig werden. „Mithilfe von mRNA, die die genetische Information für einen grün fluoreszierenden Farbstoff enthielt, konnten wir zunächst nachweisen, dass fast alle Stammzellen die mRNA-Moleküle in sich aufnehmen“, berichtet Stadelmann. In einem nächsten Schritt zeigte das Team über ein absichtlich verändertes Molekül auf der Oberfläche menschlicher Muskelstammzellen, dass es mithilfe der Methode gelingen kann, Gendefekte gezielt zu reparieren.

Eine klinische Studie ist bereits geplant

Schließlich probierte das Team noch ein der Genschere CRISPR/Cas9 ähnliches Werkzeug aus, das die DNA aber nicht zerschneidet, sondern nur an einer Stelle punktgenau verändert. „Wir können damit noch feiner arbeiten. Allerdings ist dieses Tool nicht für jede Mutation geeignet, die eine Muskeldystrophie hervorruft“, erklärt Stadelmann. Mit Experimenten in der Petrischale konnten er und sein Team nun zeigen, dass die reparierten Muskelstammzellen ebenso wie gesunde Zellen in der Lage sind, miteinander zu fusionieren und junge Muskelfasern zu bilden.

„Wir planen jetzt, gegen Ende des Jahres eine erste klinische Studie mit fünf bis sieben Patientinnen und Patienten zu starten, die an Muskeldystrophie leiden“, kündigt Spuler an. Das zuständige Paul-Ehrlich-Institut habe die Idee beratend unterstützt. Natürlich könne man keine Wunder erwarten, sagt die Forscherin. „Erkrankte, die im Rollstuhl sitzen, werden auch nach unserer Therapie nicht einfach aufstehen und loslaufen.“ Doch für viele der Betroffenen sei es schon ein großer Fortschritt, wenn ein kleiner Muskel, der beispielsweise fürs Greifen oder Schlucken wichtig sei, wieder besser funktioniere. Die Idee, auch größere Muskeln, wie sie zum Stehen und Gehen benötigt werden, zu reparieren, stehe bereits im Raum, sagt Spuler. Dazu müssten die molekularen Werkzeuge allerdings so sicher werden, dass man sie bedenkenlos nicht nur in isolierte Muskelstammzellen, sondern direkt in den degenerierten Muskel einbringen könnte.

Max-Delbrück-Centrum für Molekulare Medizin (MDC)

Das Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft gehört zu den international führenden biomedizinischen Forschungszentren. Nobelpreisträger Max Delbrück, geboren in Berlin, war ein Begründer der Molekularbiologie. An den MDC-Standorten in Berlin-Buch und Mitte analysieren Forscher*innen aus rund 60 Ländern das System Mensch – die Grundlagen des Lebens von seinen kleinsten Bausteinen bis zu organübergreifenden Mechanismen. Wenn man versteht, was das dynamische Gleichgewicht in der Zelle, einem Organ oder im ganzen Körper steuert oder stört, kann man Krankheiten vorbeugen, sie früh diagnostizieren und mit passgenauen Therapien stoppen. Die Erkenntnisse der Grundlagenforschung sollen rasch Patient*innen zugutekommen. Das MDC fördert daher Ausgründungen und kooperiert in Netzwerken. Besonders eng sind die Partnerschaften mit der Charité – Universitätsmedizin Berlin im gemeinsamen Experimental and Clinical Research Center (ECRC) und dem Berlin Institute of Health (BIH) in der Charité sowie dem Deutschen Zentrum für Herz-Kreislauf-Forschung (DZHK). Am MDC arbeiten 1600 Menschen. Finanziert wird das 1992 gegründete MDC zu 90 Prozent vom Bund und zu 10 Prozent vom Land Berlin. www.mdc-berlin.de

Wissenschaftliche Ansprechpartner:

Prof. Dr. Simone Spuler
Leiterin der Arbeitsgruppe „Myologie“
Experimental and Clinical Research Center (ECRC) vom Max-Delbrück-Centrum für Molekulare Medizin und Charité – Universitätsmedizin Berlin
simone.spuler@mdc-berlin.de oder simone.spuler@charite.de

Dr. Helena Escobar
Postdoktorandin in der Arbeitsgruppe „Myologie“
Experimental and Clinical Research Center (ECRC) vom Max-Delbrück-Centrum für Molekulare Medizin und Charité – Universitätsmedizin Berlin
+49 30 450 540 526
helena.escobar@mdc-berlin.de oder helena.escobar@charite.de

Originalpublikation:

Christian Stadelmann, Silvia Di Francescantonio et al. (2022): „mRNA-mediated delivery of gene editing tools to human primary muscle stem cells“. In: Molecular Therapy Nucleic Acids, DOI: 10.1016/j.omtn.2022.02.016

Weitere Informationen:

https://www.mdc-berlin.de/de/spuler – AG Spuler
https://www.mdc-berlin.de/de/news/news/die-muskelretterin – Porträt Simone Spuler

Media Contact

Jana Schlütter Kommunikation
Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Darstellung multiferrischer Heterostrukturen für energieeffizientes MRAM mit riesigem magnetoelektrischem Effekt.

Magnetischer Speicher mit energieeffizientem MRAM freigeschaltet

Forscher der Universität Osaka stellen innovative Technologie zur Senkung des Energieverbrauchs moderner Speichervorrichtungen vor. Fortschritt in der Speichertechnologie: Überwindung der Grenzen traditioneller RAM Osaka, Japan – In den letzten Jahren…

Framework zur Automatisierung von RBAC-Konformitätsprüfungen mithilfe von Prozessmodellierung und Richtlinienvalidierungswerkzeugen.

Next-Level System-Sicherheit: Intelligenterer Zugriffsschutz für Organisationen

Fortschrittliches Framework zur Verbesserung der System-Sicherheit Forschende der University of Electro-Communications haben ein bahnbrechendes Framework zur Verbesserung der System-Sicherheit durch die Analyse von Geschäftsprozessprotokollen entwickelt. Dieses Framework konzentriert sich darauf,…

Tiefseesedimentkern zeigt mikrobielle Karbonatbildung an Methanquellen.

Wie mikrobielles Leben die Kalkbildung im tiefen Ozean beeinflusst

Mikroorganismen sind überall und beeinflussen die Umwelt der Erde seit über 3,5 Milliarden Jahren. Forschende aus Deutschland, Österreich und Taiwan haben nun erstmals die Rolle entschlüsselt, die Mikroorganismen bei der…