Moleküle im Eierkarton

Wie sich Moleküle durch eine Wasseroberfläche gesteuert anordnen können hat ein Team am MPI für Polymerforschung untersucht.
(c) MPI für Polymerforschung

Wie Wasseroberflächen zur Herstellung funktionaler Materialien genutzt werden können.

Die Herstellung hochwertiger Monolagen – d. h. nur ein Molekül hoch – ist für optoelektronische Bauteile wie organische Leuchtdioden, die heute in modernen Handys verwendet werden, von großer Bedeutung: Sowohl die Lebensdauer als auch die Energieeffizienz können hierdurch erhöht werden. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung haben nun in Zusammenarbeit mit der TU Dresden mit Hilfe von Lasern untersucht, wie Wasseroberflächen als eine Schablone für die regelmäßige Anordnung von Molekülen genutzt werden können und welche physikalisch-chemischen Mechanismen dahinter stecken.

Organische Leuchtdioden bestehen aus vielen dünnen Schichten, von denen einige nur ein Molekül dick sind. Die bereits in den 1980er Jahren entdeckte „On-Water-Chemie“ – die Nutzung von Wasseroberflächen zur Beeinflussung chemischer Reaktionen – ist ein vielversprechender Ansatz zur Herstellung solcher Schichten. Wie ein Eierkarton bietet diese Art der Chemie die Möglichkeit, Moleküle selektiv in eine kristalline, d. h. regelmäßig angeordnete Struktur zu zwingen: Sie können nur dort sitzen, wo die Tenside auf der Wasseroberfläche es ihnen erlauben.

Bislang war unklar, welche physikalischen und chemischen Prozesse für diese Anordnung notwendig sind. Welche Rolle spielt zum Beispiel die Ladung des Tensids? Inwieweit müssen die Bindungsabstände auf der Wasseroberfläche mit denen des aufgebrachten Moleküls übereinstimmen?

Yuki Nagata, Gruppenleiter im Arbeitskreis von Mischa Bonn am MPI für Polymerforschung, und sein Team sind diesen Fragen nachgegangen. Dazu nutzten sie das Molekül „Polyanilin“ als Versuchsobjekt und untersuchten den Prozess der Anordnung auf der Wasseroberfläche mit Hilfe der Laserspektroskopie genauer.

Die Summenfrequenzspektroskopie (SFG) ist dafür ideal geeignet, da sie nur Signale von der Grenzfläche und nicht vom darunter liegenden Wasser liefert. Mit ihrer Hilfe konnte das Team den Polymerisationsprozess über einen Zeitraum von mehreren Stunden abbilden und auch entstehende Zwischenstufen nachweisen.

„Wir konnten zeigen, dass die Ladung an der Oberfläche für die Qualität der synthetisierten Proben von Bedeutung ist“, so Nagata. „Wir hoffen, dass unsere Forschung die Möglichkeit bietet, maßgeschneiderte Polymerbeschichtungen herzustellen, indem die Wasseroberflächen entsprechend angepasst werden.“

Die Ergebnisse des Teams wurden jetzt in der Oktoberausgabe der Zeitschrift Chem veröffentlicht.

Wissenschaftliche Ansprechpartner:

Dr. Yuki Nagata
+49 6131 379-380
nagata@mpip-mainz.mpg.de

Originalpublikation:

Real-time study of on-water chemistry: Surfactant monolayer-assisted growth of a crystalline quasi-2D polymer
https://doi.org/10.1016/j.chempr.2021.07.016

http://www.mpip-mainz.mpg.de

https://www.mpip-mainz.mpg.de/de/presse/pm-2021-12?c=595459

Media Contact

Dr. Christian Schneider Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Polymerforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Selen-Proteine: Neuer Ansatzpunkt für die Krebsforschung

Eine aktuelle Studie der Uni Würzburg zeigt, wie ein wichtiges Enzym in unserem Körper bei der Produktion von Selen-Proteinen unterstützt – für die Behandlung von Krebs bei Kindern könnte diese…

Pendler-Bike der Zukunft

– h_da präsentiert fahrbereiten Prototyp des „Darmstadt Vehicle“. Das „Darmstadt Vehicle“, kurz DaVe, ist ein neuartiges Allwetter-Fahrzeug für Pendelnde. Es ist als schnelle und komfortable Alternative zum Auto gedacht, soll…

Neuartige Methode zur Tumorbekämpfung

Carl-Zeiss-Stiftung fördert Projekt der Hochschule Aalen mit einer Million Euro. Die bisherige Krebstherapie effizienter gestalten bei deutlicher Reduzierung der Nebenwirkungen auf gesundes Gewebe – dies ist das Ziel eines Projekts…