Molekulare Mechanismen von Pilzinfektionen aufgeklärt

Der Verlust des RNA-bindenden Proteins Khd4 stört den Membrantransport. Die angefärbten Vakuolen sammeln sich nicht mehr an der Hyphenspitze, sondern verteilen sich in der gesamten Hyphe. Weiße Pfeilspitzen zeigen die Hyphenspitze an.
(c) HHU / Srimeenakshi Sankaranarayanan

Pilzinfektionen bedrohen Menschen, Tiere und auch Pflanzen, mit teilweise ernsten Folgen. Ein Forschungsteam der Heinrich-Heine-Universität Düsseldorf (HHU) hat zusammen mit Kolleginnen und Kollegen aus Frankfurt/Main und Aachen einen wichtigen Mechanismus aufgeklärt, wie auf molekularer Ebene solche Infektionen reguliert werden. In der Fachzeitschrift Proceedings of the National Academy of Sciences (PNAS) beschreiben sie, dass sich hieraus auch Angriffspunkte für neue Antipilzmittel ergeben können. Biologie: Veröffentlichung in PNAS

Pilze können als pathogene Erreger schwere Krankheiten bei Menschen, Tieren und Pflanzen verursachen. Beim Menschen ist häufig die Haut betroffen, zum Beispiel beim eher harmlosen Fußpilz. Gerade bei einem geschwächten Immunsystem können aber auch innere Organe befallen werden; die Lungenkrankheit Aspergillose wird beispielsweise von Schimmelpilzen aus der Familie Aspergillus ausgelöst. Bei Nutzpflanzen können von Pilzen verursachte Krankheiten großen Schaden anrichten, bekannt sind etwa das für den Menschen hochgiftige Mutterkorn beim Roggen oder der Maisbeulenbrand, für den der Pilz Ustilago maydis verantwortlich ist.

Um neue Abwehrstrategien zum Schutz von Menschen, Tieren und Pflanzen zu entwickeln, ist es wichtig zu verstehen, wie die Infektionen auf der molekularen Ebene, vor allem auch auf DNA- und RNA-Ebene, reguliert werden. Aber insbesondere das Wissen um die RNA-Regulierung bei Pilzpathogenen ist derzeit noch gering.

Die Arbeitsgruppe von Prof. Dr. Michael Feldbrügge vom Institut für Mikrobiologie der HHU hat zusammen mit Forschungsgruppen aus Frankfurt und Aachen eine leistungsfähige RNA-Markierungstechnik für Pilze angewandt, die im lebenden Organismus („in vivo“) funktionieren. Die Forschenden fanden heraus, wie ein wichtiges RNA-bindendes Protein (kurz RBP) mit Namen Khd4 das Wachstum infektiöser Hyphen – die fadenförmige Erscheinungsform der Pilze, nur diese lösen eine Infektion aus – reguliert.

Wichtig für das Wachstum infektiöser Hyphen ist der Membrantransport: ein Recyclingprozess, der mittels der Vakuolen – spezieller Organellen in der Zelle – den Materialaustausch zwischen dem Pilz und dessen Umgebung erlaubt.

Die Bestimmung der Stabilität von informationsübertragenden mRNAs war ein wichtiger Aspekt in der publizierten Arbeit. Von Natur aus ist die RNA nicht sehr stabil und sie wird auch aktiv abgebaut. Über den mRNA-Abbau wird die Proteinmenge reguliert.

Prof. Feldbrügge: „Wir haben erstmals ein neues regulatorisches Konzept für Infektionen entdeckt: Ein einziges RBP steuert das polare Wachstum von infektiösen Hyphen, indem es die Stabilität von mRNAs bestimmt, die wiederum den Membranverkehr regulieren. Dies eröffnet Ansatzpunkte für die Entwicklung neuer Fungizide, die RBPs als neue Ziele für die Bekämpfung von Pilzen nutzen.“

Die Forschungsarbeiten erfolgten in enger Zusammenarbeit verschiedener Einrichtungen sowohl an der HHU als auch mit externen Partnern. So haben die Erstautorin und Doktorandin Srimeenakshi Sankaranarayanan sowie Dr. Carl Haag, die beide von der Manchot-Graduiertenschule „Molecules of Infection“ (MOI) gefördert werden, sich in erster Linie mit dem Vergleich von pflanzen- und humanpathogenen Pilzen beschäftigt. Am Biologisch-Medizinischen Forschungszentrum (BMFZ) der HHU wurden die RNAs sequenziert. Die Kooperationspartnerin Dr. Kathi Zarnack von der Universität Frankfurt/Main übernahm im Projekt die bioinformatische Auswertung.

„Ein wichtiger Aspekt waren mathematische Modellierungen, bei denen theoretisch und experimentell arbeitende Gruppen eng verzahnt waren,“ betont Feldbrügge: „Diese Form der Kooperation gehört zum Grundkonzept unseres 2023 gestarteten Sonderforschungsbereichs ‚MibiNet‘; so trug der Beitrag von Prof. Dr. Anna Matuszyńska von der RWTH Aachen entscheidend zum Erfolg des Projekts bei.“

Originalpublikation:

Srimeenakshi Sankaranarayanan, Carl Haag, Patrick Petzsch, Karl Köhrer, Anna Matuszyńska, Kathi Zarnack, and Michael Feldbrügge; The mRNA stability factor Khd4 defines a specific mRNA regulon for membrane trafficking in the pathogen Ustilago maydis. PNAS (2023).

DOI: 10.1073/pnas.2301731120

Weitere Informationen:

https://www.sfb1535.hhu.de/

Media Contact

Dr.rer.nat. Arne Claussen Stabsstelle Presse und Kommunikation
Heinrich-Heine-Universität Düsseldorf

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Selen-Proteine …

Neuer Ansatzpunkt für die Krebsforschung. Eine aktuelle Studie der Uni Würzburg zeigt, wie ein wichtiges Enzym in unserem Körper bei der Produktion von Selen-Proteinen unterstützt – für die Behandlung von…

Pendler-Bike der Zukunft

– h_da präsentiert fahrbereiten Prototyp des „Darmstadt Vehicle“. Das „Darmstadt Vehicle“, kurz DaVe, ist ein neuartiges Allwetter-Fahrzeug für Pendelnde. Es ist als schnelle und komfortable Alternative zum Auto gedacht, soll…

Neuartige Methode zur Tumorbekämpfung

Carl-Zeiss-Stiftung fördert Projekt der Hochschule Aalen mit einer Million Euro. Die bisherige Krebstherapie effizienter gestalten bei deutlicher Reduzierung der Nebenwirkungen auf gesundes Gewebe – dies ist das Ziel eines Projekts…