Nanosonde mit Barcode – Sensoren detektieren aktive Proteasen
Protein-spaltende Enzyme spielen eine wichtige Rolle bei vielen physiologischen Vorgängen. Meist liegen solche Proteasen in einem inaktiven Zustand vor und werden erst unter bestimmten Bedingungen aktiviert. Einige stehen in Verbindung mit Krankheiten, wie Infektionen oder Krebs, entsprechend wichtig sind Methoden, die aktive Proteasen selektiv detektieren. In der Zeitschrift Angewandte Chemie stellt ein Forschungsteam eine neue Klasse von Protease-Aktivitäts-Sensoren vor: mit Peptid-DNA-Konjugaten bestückte Gold-Nanopartikel.
Das Team um Devleena Samanta und Anna Capasso (The University of Texas at Austin, USA) hat gezeigt, dass diese Nanosonden mehrere aktive Proteasen parallel nachweisen können (Multiplex-Messungen). Die Methode arbeitet bei Raumtemperatur und benötigt weder komplizierte Probenvorbereitungen noch aufwendige Geräte.
Herzstück sind neuartige Sonden: Gold-Nanopartikel, die mit Ketten aus einem Peptid- und einem DNA-Teil bestückt sind. Das Peptid ist so aufgebaut, dass es von der interessierenden Protease gespalten wird. Die DNA dient als einzigartiger Barcode zur Identifikation des Peptids und außerdem als Signalverstärker. Ist die gesuchte Protease in aktiver Form in der Probe, spaltet sie das Peptid, der DNA-Barcode wird dadurch in die Lösung freigesetzt und lässt sich, basierend auf seiner Sequenz, spezifisch nachweisen.
Für diesen Nachweis verwendet das Team einen CRISPR/Cas12a-Test: Das Enzym Cas12a ist an eine Guide-RNA (gRNA) gebunden, mit der es einen inaktiven Komplex bildet. Die gRNA enthält einen Abschnitt, der den DNA-Barcode spezifisch bindet. Das aktiviert Cas12a, sodass es nun einzelsträngige DNA (ssDNA) „zerschneiden“ kann. Für den Test werden ssDNA-Moleküle zugegeben, die an einem Ende eine fluoreszierende Gruppe (Fluorophor) tragen, am anderen einen Quencher, ein Molekül, das die Fluoreszenz des Fluorophors „auslöscht“ – wenn sie sich nah genug kommen. Wird die ssDNA zerschnitten, trennen sich Fluorophor und Quencher. Es entsteht eine starke Fluoreszenz, die anzeigt, dass die gesuchte Protease vorhanden ist (Nachweisgrenze ca. 58 pM).
Sind vor Ort keine Geräte verfügbar und muss es schnell gehen, kann der Nachweis auch mit dem bloßen Auge erfolgen: Spaltet die Protease das Peptid der Sonde, ändert sich die Oberflächenladung der Gold-Nanopartikel und sie ballen sich zusammen (aggregieren). Als „plasmonische Nanostrukturen“ hängt ihre Farbe maßgeblich vom Grad der Aggregation ab. Nanomolare Protease-Konzentrationen sind bereits anhand der Farbänderung der Testlösung erkennbar.
Mit einer Multiplex-Detektion der Proteasen 3CL und Caspase3 konnte das Team die hohe Empfindlichkeit und Selektivität des neuen Ansatzes demonstrieren. 3CL ist ein Marker für aktive Corona-Infektionen und Covid-Patient*innen zeigen oft erhöhte Aktivitäten des Apoptose-Markers Caspase3. Das klinische Potenzial konnte zudem gezeigt werden, indem Cathepsin B, eine mit kolorektalem Krebs in Verbindung stehende Protease, in drei verschiedenen von Patienten gewonnen Tumor-Zelllinien nachgewiesen wurde.
Diese Nanosonden ergeben hundertfach stärkere Fluoreszenz-Signale verglichen mit kommerziellen Fluoreszenz-basierten Protease-Sensoren. Zudem kann praktisch jede Protease detektiert werden, wenn das Peptid, das diese spaltet, bekannt ist. Diese Nanosonden könnten so eine frühzeitige Erkennung von Krankheiten ermöglichen und die Genauigkeit und Verlässlichkeit diagnostischer Tests durch Multiplexing erhöhen.
Angewandte Chemie: Presseinfo 51/2023
Autor/-in: Devleena Samanta, The University of Texas at Austin (USA), https://www.devleenasamanta.com/
Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany
Die „Angewandte Chemie“ ist eine Publikation der GDCh.
Originalpublikation:
https://doi.org/10.1002/ange.202310964
Weitere Informationen:
Media Contact
Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Parallele Pfade: Das Verständnis von Malariaresistenz bei Schimpansen und Menschen
Die nächsten Verwandten des Menschen passen sich genetisch an Lebensräume und Infektionen an Überleben des am besten Angepassten: Genetische Anpassungen bei Schimpansen aufgedeckt Görlitz, 10.01.2025. Schimpansen verfügen über genetische Anpassungen,…
Du bist, was du isst – Stanford-Studie verbindet Ballaststoffe mit Modulation von Anti-Krebs-Genen
Die Ballaststofflücke: Ein wachsendes Problem in der amerikanischen Ernährung Ballaststoffe sind bekanntlich ein wichtiger Bestandteil einer gesunden Ernährung, doch weniger als 10 % der Amerikaner konsumieren die empfohlene Mindestmenge. Eine…
Vertrauen Sie Ihrem Bauchgefühl – RNA-Protein-Entdeckung für eine bessere Immunität
HIRI-Forscher entschlüsseln Kontrollmechanismen der Polysaccharidverwertung in Bacteroides thetaiotaomicron. Forschende des Helmholtz-Instituts für RNA-basierte Infektionsforschung (HIRI) und der Julius-Maximilians-Universität (JMU) Würzburg haben ein Protein sowie eine Gruppe kleiner Ribonukleinsäuren (sRNAs) in…