Natürliches Recycling am Ursprung des Lebens

Vulkanische Süßwasserseen, ähnlich denen, die heute auf Island zu finden sind, boten eine günstige Nische auf einer frühen Erde. Die salzarmen, alkalischen Bedingungen ermöglichten eine frühe RNA-Replikation.
© Dieter Braun / LMU München

Eine neue Studie zeigt, wie die chemischen Eigenschaften von RNA-Molekülen die Entstehung von komplexem Leben vorangetrieben haben könnten.

Wie konnte sich komplexes Leben auf der unwirtlichen frühen Erde entwickeln? Am Anfang stand wohl die Ribonukleinsäure (RNA) als Träger erster Erbinformationen. Um Komplexität in ihren Sequenzen aufzubauen, müssen diese Biomoleküle Wasser abscheiden. Auf einer frühen Erde, die größtenteils mit Meerwasser bedeckt war, war das allerdings gar nicht so einfach. In einer kürzlich im Fachmagazin Journal of the American Chemical Society (JACS) erschienenen Veröffentlichung haben Forschende aus dem Team von LMU-Professor Dieter Braun gezeigt, dass beim Ringen der RNA gegen das Umgebungswasser ihre natürliche Recycling-Fähigkeit und die richtigen Umgebungsbedingungen ausschlaggebend gewesen sein könnten.

„Die Bausteine der RNA stoßen mit jeder Verknüpfung ein Wassermolekül ab, wenn die RNA-Kette sich verlängert“, erklärt Braun, Sprecher des Sonderforschungsbereichs (SFB) Molecular Evolution in Prebiotic Environments und Koordinator im Exzellenzcluster ORIGINS. „Wenn dem RNA-Molekül umgekehrt Wasser hinzugefügt wird, werden die RNA-Bausteine wieder in den präbiotischen Pool eingespeist.“ Diese Umschichtung von Wasser funktioniert besonders gut unter salzarmen Bedingungen bei hohem pH-Wert. „Unsere Experimente deuten darauf hin, dass das Leben aus einem sehr kleinen Set von Molekülen entstehen konnte, unter Bedingungen, wie sie auf vulkanischen Inseln der frühen Erde vorkamen“, sagt Adriana Serrão, Leiterin der Studie.

Unter diesen Bedingungen hat die RNA nämlich die Fähigkeit, sich zu spalten, ohne ein Wassermolekül hinzuzufügen. Das Ende des RNA-Strangs bleibt wasserfrei und kann spontan neue RNA-Bindungen eingehen. Das Braun-Labor konnte zeigen, dass das Wiederverbinden dieser abgespaltenen RNA effizient und bemerkenswert präzise beim Kopieren der Sequenzinformation funktioniert. Dieser Prozess findet nur statt, wenn die RNA-Bausteine an ein Vorlagen-RNA-Molekül mit genau aufeinander abgestimmten Basenpaaren in einer doppelsträngigen Konfiguration gebunden sind. Das erzeugt eine Kopie des bereits existierenden RNA-Strangs, bevor dieser durch die Zugabe von Wasser wieder zerfällt.

Bisher war angenommen worden, dass RNA sich nur selbst kopieren kann, indem sie ‚zufällig‘ eine etwa 200 Nukleotide lange Sequenzen aufbaut – sogenannte Ribozyme – welche aber nur in salzreichen und somit RNA-unfreundlichen Umgebungen operieren können. Die Ergebnisse der Forschenden machen diese komplexen Ribozym-Sequenzen in den frühen Stadien der RNA-Evolution jedoch überflüssig. „Die Präzision ist vergleichbar mit dem Kopieren von RNA durch Ribozyme“, sagt Sreekar Wunnava, ebenfalls Erstautor der Studie. „Das bedeutet, dass eine RNA-Welt entstehen kann, ohne dass zuvor lange komplexe Sequenzen erzeugt werden müssen“.

Das frühe Leben war demnach ein sehr einfacher Stoffwechsel, bei dem RNA-Sequenzen durch kontinuierliches Ersetzen mit recycelten Molekülen kopiert wurden. Alles, was es dazu braucht, ist eine alkalische Süßwasserumgebung, wie sie man sie auch heute noch auf vulkanischen Inseln wie Hawaii oder Island findet. „Das Leben könnte also aus einer einfachen und kalten präbiotischen Ursuppe aus RNA-Bausteinen entstanden sein“, erklärt Braun. Unter diesen Umständen finden die Reaktionen zwar noch sehr langsam statt und benötigen einige Tage, um abgeschlossen zu werden. Zeit war jedoch am Anfang der Evolution reichlich vorhanden und die kalten Süßwasser-Refugien auf urzeitlichen Vulkaninseln ermöglichten es der RNA auf der ansonsten unwirtlichen frühen Erde zu überleben.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Dieter Braun
Department of Physics and
Center for NanoScience (CeNS)
LMU München
dieter.braun@lmu.de

Originalpublikation:

Adriana Calaça Serrão, Sreekar Wunnava, Avinash V. Dass, Lennard Ufer, Philipp Schwintek, Christof B. Mast, and Dieter Braun: High-Fidelity RNA Copying via 2′,3′-Cyclic Phosphate Ligation.
Journal of the American Chemical Society
DOI 10.1021/jacs.3c10813

https://www.lmu.de/de/newsroom/newsuebersicht/news/natuerliches-recycling-am-ursprung-des-lebens.html

Media Contact

LMU Stabsstelle Kommunikation und Presse
Ludwig-Maximilians-Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Schimpanse in einem tropischen Wald, der genetische Anpassungen zum Überleben zeigt.

Parallele Pfade: Das Verständnis von Malariaresistenz bei Schimpansen und Menschen

Die nächsten Verwandten des Menschen passen sich genetisch an Lebensräume und Infektionen an Überleben des am besten Angepassten: Genetische Anpassungen bei Schimpansen aufgedeckt Görlitz, 10.01.2025. Schimpansen verfügen über genetische Anpassungen,…

Ballaststoffreiche Lebensmittel fördern Darmgesundheit und Antikrebswirkung

Du bist, was du isst – Stanford-Studie verbindet Ballaststoffe mit Modulation von Anti-Krebs-Genen

Die Ballaststofflücke: Ein wachsendes Problem in der amerikanischen Ernährung Ballaststoffe sind bekanntlich ein wichtiger Bestandteil einer gesunden Ernährung, doch weniger als 10 % der Amerikaner konsumieren die empfohlene Mindestmenge. Eine…

RNA-bindendes Protein RbpB reguliert den Stoffwechsel der Darmmikrobiota in Bacteroides thetaiotaomicron.

Vertrauen Sie Ihrem Bauchgefühl – RNA-Protein-Entdeckung für eine bessere Immunität

HIRI-Forscher entschlüsseln Kontrollmechanismen der Polysaccharidverwertung in Bacteroides thetaiotaomicron. Forschende des Helmholtz-Instituts für RNA-basierte Infektionsforschung (HIRI) und der Julius-Maximilians-Universität (JMU) Würzburg haben ein Protein sowie eine Gruppe kleiner Ribonukleinsäuren (sRNAs) in…