Neu entdeckte Oberflächenstrukturen könnten die Immunfunktion der B-Zellen besser erklären

Die computergestützte Bildanalyse macht die verschiedenen topografischen Merkmale und Position der IgM-BCR (beide Bilder rechts) auf der Oberfläche von B-Zellen sichtbar.
(c) Bugra Özdemir / Universität Freiburg

Forschende der Universität Freiburg beschreiben erstmals ein Netzwerk von Membranerhebungen auf B-Lymphozyten.

Mithilfe neuer mikroskopischer Methoden in Kombination mit einer auf maschinellem Lernen basierenden Bildanalyse haben Freiburger Forschende neue Strukturen auf der Oberfläche lebender B-Zellen entdeckt, die sich auf die Verteilung und möglicherweise auf die Funktion ihrer Antigenrezeptoren auswirken. Die Studie der Forschenden ist in The EMBO Journal erschienen.

B-Zellen sind ein wichtiger Teil unseres Immunsystems und erkennen Krankheitserreger über spezielle Rezeptoren auf ihrer Oberfläche. Wissenschaftler*innen der Universität Freiburg konnten nun beobachten, wie diese Rezeptoren auf der Oberfläche von lebenden Zellen verteilt sind. Sie fanden heraus, dass die Oberfläche der B-Zellen eine charakteristische Landschaft aus miteinander verbundenen Erhebungen und Ausstülpungen bildet. In dieser Landschaft häufen sich die B-Zell-Antigenrezeptoren der IgM-Klasse (IgM-BCR) in bestimmten Bereichen. Die Positionierung der Rezeptoren und Bildung von größeren Einheiten sind wahrscheinlich Mechanismen, welche diese Rezeptoren regulieren und deren Erkennung von Fremdstoffen (Antigenen) und damit die Aktivierung von B-Zellen erleichtern.

Die Oberfläche von B lymphozten ist strukturiert

In den meisten immunologischen Lehrbüchern werden Lymphozyten als runde, kugelartige Zellen dargestellt, auf deren glatter Oberfläche die Rezeptoren zufällig verteilt sind. Diese Vorstellung einer glatten, unstrukturierten Oberfläche von B-Zellen wurde bereits durch elektronenmikroskopische Aufnahmen von fixierten und gefrorenen Lymphozyten in Frage gestellt. Auf deren Oberfläche wurden dünne Membranausstülpungen, sogenannte Mikrovilli, entdeckt. Diese tentakelartigen Strukturen helfen den Immunzellen bei der Suche nach Antigenen, also molekularen Kennzeichen von Krankheitserregern. B-Lymphozyten erkennen solche Antigene über verschiedene Klassen ihrer BCR Komplexe. Diese Antigenrezeptoren sind molekulare Maschinen, die nach ihrer Aktivierung mit anderen Molekülen interagieren um eine Signalkaskade in Gang zu setzen. Das führt eine Differenzierung der B-Zellen zu Plasmazellen, welche große Mengen von schützenden Antikörpern produzieren.

Bilder von lebenden Zellen mit besonders hoher Geschwindigkeit in 3-D
Die Arbeitsgruppe um Prof. Dr. Michael Reth der Exzellenzcluster BIOSS und CIBSS – Centre for Integrative Biological Signalling Studies der Universität Freiburg hat nun in Zusammenarbeit mit der Gruppe von Prof. Dr. Ralf Reski, der ebenfalls in BIOSS und CIBSS forscht, sowie Wissenschaftler*innen des Euro-BioImaging (EMBL) und der Universität Osnabrück untersucht, wie die IgM-BCR Komplexe auf der Oberfläche lebender B-Zellen verteilt sind. Dafür nutzten sie die „Lattice Light Sheet Microscopy“, kurz LLSM, als Technologie. „Diese Methode kann volumetrische Bilder von lebenden Zellen mit besonders hoher Geschwindigkeit in 3-D aufnehmen“, erklärt Dr. Deniz Saltukoglu von der Universität Freiburg, die die Erstautorin der Studie ist. „Bei anderen hochauflösenden mikroskopischen Methoden müssen die Zellen auf einer flachen Oberfläche anheften, wodurch sich die Oberflächenstrukturen der B-Zellen völlig verändern. Mit der LLSM konnten wir die Zellen in einer Umgebung beobachten, die biologisches Gewebe nachahmt, sodass die Strukturen der B Zellen weitgehend unverändert sind und sich die dynamischen Bewegungen der IgM-BCR Komplexe verfolgen lassen.“

Die Forschenden entwickelten maßgeschneiderte Methoden zur Bildanalyse, um die mikroskopischen Daten zu quantifizieren und objektiv zu charakterisieren. „Wir mussten die Bilder segmentieren und morphologische Merkmale isolieren“, beschreibt Saltukoglu. „Bisher war dies nur mit zweidimensionalen Daten möglich, also mussten wir neue Berechnungsmethoden für volumetrische Zeitverlaufsdaten entwickeln.“ Dabei nutzten die Forscher*innen Algorithmen als Inspiration, die sonst für die Kartierung geografischer Daten bei archäologischen Untersuchungen verwendet werden. Mit diesem Ansatz fanden sie heraus, dass die Oberfläche der B-Zellen ein Netzwerk von Erhebungen trägt, an deren Schnittstellen die Mikrovilli sitzen. Innerhalb dieser „zellulären Landschaft“ bilden die IgM-BCRs Cluster, die sich entlang der Membranerhebungen und an den Basen der Mikrovilli konzentrieren.

„Wir vermuten, dass die verschiedenen topographischen Positionen der IgM-BCR-Cluster die Aktivität dieser Antigenrezeptoren steuern“, sagt Reth. „An den Basen werden die IgM-BCRs möglicherweise negativ reguliert, um zu verhindern, dass sie ungewollt aktiviert werden. Sobald die B-Zellen ein Gefahrensignal erkennen, verlängern sich ihre Mikrovilli, und die IgM-BCR-Cluster werden an die Spitze der Mikrovilli rekrutiert. Dort sind sie optimal positioniert um Antigene zu erkennen, und werden wahrscheinlich auch nicht mehr negativ reguliert.“ Diese Hypothese steht im Einklang mit anderen Erkenntnissen von Reths Gruppe, die darauf hindeuten, dass die IgM-BCRs über Interaktionen mit regulatorischen Co-Rezeptoren reguliert werden. Das heißt, dass Position und Verteilung der Antigenrezeptoren wahrscheinlich zusätzliche Kontrollmechanismen sind, die die Signalübertragung und Aktivierung von Zellen des Immunsystems beeinflussen.

Über den Exzellenzcluster CIBSS

Der Exzellenzcluster CIBSS – Centre for Integrative Biological Signalling Studies – hat das Ziel, ein umfassendes Verständnis von biologischen Signalvorgängen über Skalen hinweg zu gewinnen – von den Wechselwirkungen einzelner Moleküle und Zellen bis hin zu den Prozessen in Organen und ganzen Organismen. Mit dem gewonnenen Wissen lassen sich Signale gezielt kontrollieren und dies wiederum ermöglicht den Forschenden nicht nur Erkenntnisse in der Forschung, sondern auch Innovationen in der Medizin und den Pflanzenwissenschaften.

Faktenübersicht:
– Originalpublikation: Deniz Saltukoglu, Bugra Özdemir, Michael Holtmannspötter, Ralf Reski, Jacob Piehler, Rainer Kurre, Michael Reth (2023): Plasma membrane topography governs the 3D dynamic localization of IgM B cell antigen receptor clusters. In: The EMBO Journal. DOI: https://doi.org/10.15252/embj.2022112030
– Michael Reth ist Senior Professor für molekulare Immunologie an der Fakultät für Biologie an der Universität Freiburg, Mitglied des Exzellenzclusters CIBSS – Centre for Integrative Biological Signalling Studies, und Ko-Direktor des Signalforschungszentrums BIOSS – Centre for Biological Signalling Studies. Sein Forschungsschwerpunkt liegt auf der Funktion und Aktivierung des B-Zell-Rezeptors.
– Deniz Saltukoglu ist Postdoc in der Abteilung für Molekulare Immunologie der Universität Freiburg
– Die Studie wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem National Institute of Health (NIH) finanziert.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Michael Reth
BIOSS Centre for Biological Signalling Studies
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-97374
michael.reth@bioss.uni-freiburg.de

Originalpublikation:

Deniz Saltukoglu, Bugra Özdemir, Michael Holtmannspötter, Ralf Reski, Jacob Piehler, Rainer Kurre, Michael Reth (2023): Plasma membrane topography governs the 3D dynamic localization of IgM B cell antigen receptor clusters. In: The EMBO Journal. DOI: https://doi.org/10.15252/embj.2022112030

Weitere Informationen:

https://kommunikation.uni-freiburg.de/pm/2023/neu-entdeckte-oberflaechenstruktur..

Media Contact

Rimma Gerenstein Hochschul- und Wissenschaftskommunikation
Albert-Ludwigs-Universität Freiburg im Breisgau

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Spitzenforschung in der Bioprozesstechnik

Das IMC Krems University of Applied Sciences (IMC Krems) hat sich im Bereich Bioprocess Engineering (Bioprozess- oder Prozesstechnik) als Institution mit herausragender Expertise im Bereich Fermentationstechnologie etabliert. Unter der Leitung…

Datensammler am Meeresgrund

Neuer Messknoten vor Boknis Eck wurde heute installiert. In der Eckernförder Bucht, knapp zwei Kilometer vor der Küste, befindet sich eine der ältesten marinen Zeitserienstationen weltweit: Boknis Eck. Seit 1957…

Rotorblätter für Mega-Windkraftanlagen optimiert

Ein internationales Forschungsteam an der Fachhochschule (FH) Kiel hat die aerodynamischen Profile von Rotorblättern von Mega-Windkraftanlagen optimiert. Hierfür analysierte das Team den Übergangsbereich von Rotorblättern direkt an der Rotornabe, der…