Neuartiger elektronischer Sensor erkennt gefährliche Bakterien
Forschende der Goethe-Universität Frankfurt und der Christian-Albrechts-Universität zu Kiel haben einen neuartigen Bakterien-Sensor entwickelt. Er basiert auf einem Chip mit einer innovativen Oberflächen-Beschichtung. Sie sorgt dafür, dass nur ganz spezifische Mikroorganismen an dem Sensor kleben bleiben – beispielsweise bestimmte Krankheitserreger. Je größer ihre Anzahl, desto stärker das elektrische Signal, das der Chip erzeugt. Der Sensor kann gefährliche Bakterien also nicht nur mit hoher Empfindlichkeit nachweisen, sondern auch ihre Konzentration bestimmen.
Bakterielle Infektionen fordern jedes Jahr weltweit mehrere Millionen Menschenleben. Der Nachweis schädlicher Mikroorganismen ist daher immens wichtig – nicht nur in der Krankheitsdiagnostik, sondern etwa auch bei der Herstellung von Lebensmitteln. Die bislang verfügbaren Verfahren sind jedoch oft zeitaufwändig, erfordern teure Geräte oder lassen sich nur von Fachleuten durchführen. Außerdem können sie häufig nicht zwischen aktiven Bakterien und deren Zerfallsprodukten unterscheiden.
Die neu entwickelte Methode weist dagegen nur intakte Bakterien nach. Sie nutzt dazu aus, dass Mikroorganismen stets nur bestimmte Körperzellen befallen, die sie an einer Struktur aus speziellen Zuckermolekülen erkennen. Diese sogenannte Glykokalyx ist von Zelltyp zu Zelltyp verschieden. Sie dient den Körperzellen gewissermaßen als Ausweis. Möchte man ein bestimmtes Bakterium fangen, muss man daher nur die entsprechende Erkennungsstruktur in der Glykokalyx seiner bevorzugten Wirtszelle kennen und kann diese dann gewissermaßen als Köder benutzen.
Genau das haben die Forschenden auch gemacht. „Wir wollten in unserer Studie einen bestimmten Stamm des Darmbakteriums Escherichia coli – kurz: E. coli – nachweisen“, erklärt Prof. Andreas Terfort vom Institut für Anorganische und Analytische Chemie der Goethe-Universität. „Wir wussten, welche Zellen der Erreger normalerweise infiziert. Das haben wir genutzt, um unseren Chip mit einer künstlichen Glykokalyx zu überziehen, die die Oberfläche dieser Wirtszellen imitiert. An dem Sensor bleiben daher nur Bakterien von dem gewünschten E.-coli-Stamm kleben.“
E. coli verfügt über zahlreiche kleine Ärmchen, die sogenannten Pili. Mit ihnen erkennt das Bakterium die Glykokalyx seines Wirts und hält sich an ihr fest. „Die Bakterien binden mit ihren Pili gleich mehrfach an den Sensor; sie haften an ihm dadurch besonders stark“, sagt Terfort. Die künstliche Glykokalyx ist zudem chemisch so aufgebaut, dass Mikroben, die nicht über die passenden Ärmchen verfügen, von ihr abgleiten – ähnlich wie Gebratenes von einer gut gefetteten Pfanne. Das stellt sicher, dass wirklich nur die krankmachenden E.-coli-Bakterien festgehalten werden.
Doch wie lässt sich nachweisen, dass an der künstlichen Glykokalyx Bakterien hängen? „Wir haben die Zuckermoleküle an einem leitfähigen Polymer befestigt“, erklärt der Erstautor der Veröffentlichung, Sebastian Balser, Doktorand bei Prof. Terfort. „Über diese ‚Drähte‘ können wir durch Anlegen einer elektrischen Spannung ablesen, wie viele Bakterien an den Sensor gebunden haben.“
Die Studie dokumentiert, wie gut das klappt: In ihr mischten die Forschenden Erreger aus dem gesuchten E.-coli-Stamm in verschiedenen Konzentrationen unter harmlose E.-coli-Bakterien. „Unser Sensor konnte die schädlichen Mikroorganismen auch noch in sehr geringen Mengen nachweisen“, erklärt Terfort. „Er lieferte zudem umso stärkere Signale, je höher die Konzentration der gesuchten Bakterien war.“
Die Veröffentlichung ist zunächst einmal ein Nachweis, dass die Methode funktioniert. In einem nächsten Schritt wollen die beteiligten Arbeitsgruppen untersuchen, ob sie sich auch in der Praxis bewährt. Es ist beispielsweise denkbar, sie in Regionen einzusetzen, in denen keine Krankenhäuser mit aufwändiger Labordiagnostik existieren.
Bilder zum Download: www.uni-frankfurt.de/151323552
Bildtext: Wenn man gesuchte Erreger mit einer maßgeschneiderten Oberfläche ködert, sortieren sie sich gewissermaßen selbst aus einem Gemisch vieler unterschiedlicher Bakterien aus. Damit ist es einfach, sie auf elektronischem Weg nachzuweisen. Grafik: Sebastian Balser, AG Andreas Terfort, Goethe-Universität Frankfurt
Wissenschaftliche Ansprechpartner:
Prof. Dr. Andreas Terfort
Institut für Anorganische und Analytische Chemie
Goethe-Universität Frankfurt
Tel. +49 (0)69 798-29181
aterfort@chemie.uni-frankfurt.de
Homepage https://www.uni-frankfurt.de/53459866/Arbeitskreis_Prof__Andreas_Terfort
Twitter/X: @goetheuni
Originalpublikation:
Sebastian Balser, Michael Röhrl, Carina Spormann, Thisbe K. Lindhorst,, Andreas Terfort: Selective Quantification of Bacteria in Mixtures by Using Glycosylated Polypyrrole/Hydrogel Nanolayers. ACS Applied Materials & Interfaces Article ASAP; https://doi.org/10.1021/acsami.3c14387
Media Contact
Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Die Roboterhand lernt zu fühlen
Fraunhofer IWS kombiniert Konzepte aus der Natur mit Sensorik und 3D-Druck. Damit Ernteroboter, U-Boot-Greifer und autonome Rover auf fernen Planeten künftig universeller einsetzbar und selbstständiger werden, bringen Forschende des Fraunhofer-Instituts…
Regenschutz für Rotorblätter
Kleine Tropfen, große Wirkung: Regen kann auf Dauer die Oberflächen von Rotorblättern beschädigen, die Leistungsfähigkeit und Wirtschaftlichkeit von Windenergieanlagen können sinken, vor allem auf See. Durch die Entwicklung innovativer Reparaturlösungen…
Materialforschung: Überraschung an der Korngrenze
Mithilfe modernster Mikroskopie- und Simulationstechniken konnte ein internationales Forschungsteam erstmals beobachten, wie gelöste Elemente neue Korngrenzphasen bilden. Mit modernsten Mikroskopie- und Simulationstechniken hat ein internationales Forscherteam systematisch beobachtet, wie Eisenatome…