Neurale Interaktionen in Zeiten der Stille
Während wir schlafen, sendet der Hippocampus Nachrichten an die Großhirnrinde und transferiert unser kürzlich erworbenes Wissen ins Langzeitgedächtnis. Doch wie genau geschieht das? Tübinger Wissenschaftler vom Max-Planck-Institut für biologische Kybernetik haben nun eine neuartige multimodale Methode entwickelt und haben erste Ergebnisse aus Versuchen mit anästhesierten und wachen Rhesusaffen publiziert.
Die neue Methodik verwendet Multikontaktelektroden in Kombination mit funktioneller Magnetresonanztomografie (fMRT) des gesamten Gehirns, um die weit verteilten Nervenzellnetzwerke abzubilden, die durch lokale, strukturspezifische neuronale Ereignisse aktiviert werden.
Der Hippocampus ist eine unserer ältesten Großhirnstrukturen. Viele invasive Studien an nicht-menschlichen Primaten und klinische Untersuchungen an Patienten haben gezeigt, dass der Hippocampus hauptsächlich für unser Langzeitgedächtnis verantwortlich ist. Er speichert Orte, Ereignisse und deren Zusammenhänge. Das heißt, er ist für die Speicherung der sogenannten deklarativen Gedächtnisinhalte zuständig. Ohne den Hippocampus kann ein Mensch zwar noch Handfertigkeiten wie das Spielen eines einfachen Instruments oder Fahrradfahrern erlernen, jedoch ohne jegliche Erinnerung an die Übungsstunden selbst.
Das deklarative Gedächtnis wird nach bisherigen Erkenntnissen in zwei aufeinander folgenden Schritten konsolidiert: In der ersten Phase, der Enkodierung, wird die Information aufgenommen: Der Hippocampus verbindet die noch labile Repräsentation in der Großhirnrinde mit lokalen Gedächtnisspuren. In den darauf folgenden Ruhe- oder Schlafphasen werden diese neuen Spuren gleichzeitig im Hippocampus und der Hirnrinde reaktiviert. Dadurch werden jene Verbindungen innerhalb der Großhirnrinde verstärkt, die den neu erlernten Inhalt bereits repräsentieren. Aber wie funktioniert der Dialog zwischen Hippocampus und Großhirnrinde, und wie kommuniziert der Hippocampus mit dem Rest des Gehirns?
Nikos Logothetis, Direktor der Abteilung für Physiologie kognitiver Prozesse am Max-Planck-Institut für biologische Kybernetik in Tübingen, und sein Team benutzten hierfür zum ersten Mal die von ihnen neu entwickelte Methode NET-fMRI – „Neural Event Triggered Functional Magnetic Resonance Imaging”. Bei dieser Methode werden vom Hirn selbst erzeugte Signale erfasst, welche vor allem während des Non-REM-Schlafs und den Ruhephasen auftreten. Die Signale werden dann dazu verwendet, Änderungen anderer Signale zu entdecken oder vorherzusagen. Hierzu gehören auch jene, welche mithilfe der funktionellen Magnetresonanztomografie gemessen werden. In der vorliegenden Studie wurde ein für den Hippocampus charakteristisches Signal verwendet: die sogenannten „ripples“ sind sehr schnelle Schwingungen bei 80 bis 160 Hertz, die man sowohl in anästhesierten als auch wachen Rhesusaffen messen kann.
Die Neurophysiologen konnten so die Gehirnareale ermitteln, welche durchweg ihre Aktivität in Abhängigkeit zu den Ripples erhöht oder verringert haben. Mit Hilfe von Feldpotenziale aus dem Hippocampus, zeigten die Wissenschaftler, dass die kurzen Abschnitte aperiodischer, wiederkehrender Schwingungen eng mit den robusten Aktivierungen der Hirnrinde verbunden sind, die zeitgleich zu einer umfangreichen Unterdrückung anderer Hirnstrukturen auftreten.
Interessanterweise wurden jene Strukturen gehemmt, deren Aktivität den Dialog zwischen Hippocampus und der Großhirnrinde prinzipiell hätten behindern können. Die Unterdrückung der Thalamus-Aktivität, zum Beispiel, reduziert Hirnsignale, die im Wachzustand der Sinnesverarbeitung dienen. Die Unterdrückung der Basalganglien, der Brückenregion – die unter anderem für den REM-Schlaf verantwortlich ist – sowie des Kleinhirns zeigt an, dass Aktivität in anderen Gedächtnissystemen gehemmt wird. Diese werden unter anderem für das prozedurale Lernen, beispielsweise des Fahrradfahrens, benötigt.
Die Ergebnisse der Studie bieten grundlegende Einblicke in die globale Organisation des Gedächtnisses von Primaten, einer kognitiven Fähigkeit, die erst durch das Zusammenspiel weit verteilter neuronaler Netzwerke zustande kommt. Diese Einblicke wären weder ausschließlich mit der funktionellen Bildgebung, noch allein mit der klassischen Methode von Einzelzellableitungen möglich gewesen. Fähigkeiten wie Wahrnehmung, Aufmerksamkeit, Lernen und Gedächtnis können deshalb am besten mithilfe multimodaler Methoden wie der NET-fMRI untersucht werden. Die Bedeutung der Untersuchung von neuronalen Mechanismen kann nicht genügend betont werden, beruht doch die überwiegende Mehrheit hirnorganischer Ausfälle auf Fehlfunktionen großer neuronaler Netzwerke. Sie umfassen sowohl die Hirnrinde als auch die darunter liegende Kerngebiete.
Originalpublikation:
Logothetis, N.K., Eschenko, O., Murayama, Y., Augath, M., Steudel, T., Evrard, H.C., Besserve, M., Oeltermann, A. (2012) Hippocampal-cortical Interaction during Periods of Subcortical Silence. Nature. doi: 10.1038/nature11618
Weitere Informationen über die Forschung von Nikos Logothetis:
http://www.kyb.tuebingen.mpg.de/de/forschung/abt/lo.html
Kontakt:
Prof. Dr. Nikos Logothetis
E-Mail: nikos.logothetis@tuebingen.mpg.de
Stephanie Bertenbreiter (Public Relations)
Tel.: 07071 601-1792
E-Mail: presse-kyb@tuebingen.mpg.de
Das Max-Planck-Institut für biologische Kybernetik forscht an der Aufklärung von kognitiven Prozessen auf experimentellem, theoretischem und methodischem Gebiet. Es beschäftigt rund 300 Mitarbeiterinnen und Mitarbeiter aus über 40 Ländern und befindet sich auf dem Max-Planck-Campus in Tübingen. Das MPI für biologische Kybernetik ist eines der 80 Institute und Forschungseinrichtungen der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V.
Media Contact
Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Überlebenskünstler im extremen Klima der Atacama-Wüste
Welche Mikroorganismen es schaffen, in den extrem trockenen Böden der Atacama-Wüste zu überleben, und welche wichtigen Funktionen sie in diesem extremen Ökosystem übernehmen – zum Beispiel bei der Bodenbildung –,…
Hoffnung für Behandlung von Menschen mit schweren Verbrennungen
MHH-Forschende entwickeln innovatives Medikament, um die Abstoßung von Spenderhaut-Transplantaten zu verhindern. Wenn Menschen schwere Verbrennungen erleiden, besteht nicht nur die Gefahr, dass sich die Wunde infiziert. Der hohe Flüssigkeitsverlust kann…
Neue Erkenntnisse zur Blütezeit-Regulation
Einfluss von Kohlenstoff- und Stickstoff-Signalwegen auf Blütenrepressoren bei Arabidopsis. In einer aktuellen Publikation in der Fachzeitschrift Plant Physiology hat ein internationales Forschungsteam, dem unter anderem Dr. Justyna Olas als eine…