Wie das Ohr zum Gehirn spricht
Unser Gehör öffnet uns die Welt der Musik, hilft uns die zwischenmenschliche Kommunikation zu verstehen und warnt uns wie eine „Alarmanlage“ vor potentiellen Gefahren. Weltweit beschäftigen sich daher Hörforscher mit der Frage, wie wir Töne und Geräusche empfangen und mit Hilfe unseres Gehirns verarbeiten.
Wissenschaftler am Göttinger DFG Forschungszentrum Molekularphysiologie des Gehirns (CMPB) konnten jetzt zeigen, dass der Bereich des „besten Hörens“ im Innenohr besonders intensiv vom Gehirn ausgelesen wird. Außerdem liefern sie wichtige neue Einblicke in die Struktur und Funktion der Synapsen. Diese Kontaktstellen zwischen Haarzellen und dem nachgeschalteten Hörnerv gelten als echter „Knackpunkt“ im Hörsystem, weil ausnahmslos alle vom Ohr empfangenen Informationen diese Stellen passieren.
„Wir können nun einzelne Zwischenschritte der Signalübertragung von den inneren Haarzellen im Innenohr zum Hörnerv viel besser verstehen“ sagt Prof. Dr. Tobias Moser, Leiter des Innenohr-Labors der Abteilung für Hals-Nasen-Ohrenheilkunde an der Universitätsmedizin Göttingen. Die Ergebnisse aus der Grundlagenforschung wurden am 8. März 2009 in der Online-Ausgabe der renommierten Fachzeitschrift „Nature Neuroscience“ veröffentlicht. http://dx.doi.org/10.1038/nn.2293.
Originalveröffentlichung:
Meyer AC, Frank T, Khimich D, Hoch G, Riedel D, Chapochnikov NM, Yarin YM, Harke B, Hell SW, Egner A, Moser T (2009) Tuning of Synapse Number, Structure and Function in the Cochlea. Nature Neuroscience (online) 08 March 2009, http://dx.doi.org/10.1038/nn.2293.
Aufbau des Gehörs – vom Geräusch zum Nervensignal
Auf seinem Weg zum Innenohr passiert der Schall das äußere Ohr, trifft dann auf das Trommelfell und bringt Hammer, Amboss und Steigbügel zum Vibrieren. Der Steigbügel versetzt dann die Flüssigkeit und Basilarmembran in der Hörschnecke in Schwingung. Auf dieser feinen Membran reihen sich einige Tausend Haarzellen aneinander. In Abhängigkeit von der Schallfrequenz bewegt sich ein Ort auf der Basilarmembran in bestimmten Maße. Die Haarzellen an dieser Stelle reagieren damit nur auf eine bestimmte Tonhöhe. Die für das Hören unabdingbaren inneren Haarzellen nehmen mit feinen Härchen die Schwingungen wahr, geben dann chemische Botenstoffe ab, woraufhin Hörnervenfaser die Hörinformation ans Gehirn übertragen.
Synapsen „live“ in Funktion und ihre Bausteine
Am Beispiel von Mäusen und Wüstenrennmäusen konnten Prof. Moser und sein Team nun unter anderem zeigen, dass innere Haarzellen und Hörnervenfasern im Frequenzbereich mit der höchsten Schallempfindlichkeit über erheblich mehr Synapsen verfügen. Dies entspricht dem Bereich des besten Hörens. In der von der Deutschen Forschungsgemeinschaft (DFG) geförderten Zusammenarbeit mit der Gruppe um Dr. Alexander Egner und Prof. Dr. Stefan W. Hell vom Göttinger Max-Planck-Institut für biophysikalische Chemie gelang es, molekulare Bausteine dieser Synapsen mit neuen lichtmikroskopischen Methoden, der STED-Mikroskopie, hochauflösend abzubilden.
Unter dem konfokalen Mikroskop konnten die Forscher einzelne Synapsen auch „live“ beobachten. Dabei zeigte sich, dass sich die Synapsen der Haarzellen an verschiedenen Frequenzbereichen im Mittel ähnlich verhalten. In jedem Frequenzbereich und sogar innerhalb einer einzelnen Haarzelle reagieren Synapsen jedoch unterschiedlich stark auf Reizung. Prof. Moser: „Dies könnte erklären, wie von den verschiedenen Hör¬nervenfasern, die mit derselben inneren Haarzelle verbunden sind, sehr leise Geräusche wie das Summen einer Biene wie auch lauter Lärm, den ein Flugzeug beim Starten macht, übertragen werden kann.“
Zum DFG Forschungszentrum Molekularphysiologie des Gehirns: Das seit 2002 an der Universitätsmedizin Göttingen angesiedelte DFG Forschungszentrum Molekularphysiologie des Gehirns (CMPB) hat sich das zentrale Ziel gesetzt, molekulare Prozesse und Interaktionen in Nervenzellen detailliert zu analysieren, um langfristig Therapien für psychiatrische, neurologische und neurodegenerative Erkrankungen zu verbessern und weiterzuentwickeln.
KONTAKT
Universitätsmedizin Göttingen
DFG Forschungszentrum Molekularphysiologie des Gehirns (CMPB)
Prof. Dr. Tobias Moser
Abteilung Hals-Nasen-Ohrenheilkunde
Telefon 0551-39-8968, tmoser@gwdg.de
Media Contact
Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Gewusst wie
Kaum eine andere chemische Substanz kann es mit ihnen aufnehmen, so einzigartig sind ihre Eigenschaften: PFAS. Entsprechend schwer sind die Jahrhundertgifte zu ersetzen, die sich in der Umwelt anreichern und…
Gezielt gedruckt
Vielversprechende Perspektiven für die personalisierte Medizin: Fachleute des Fraunhofer-Instituts für Mikrotechnik und Mikrosysteme IMM nutzen ihr Know-how in Mikrofluidik und Einzelzelltechnologien, um Organstrukturen zu drucken. Sie präsentieren ihre Entwicklungen vom…
Lasertechnologie als Schlüssel für die Mobilitätswende!?
LAF 2024 – Anwenderforum in Bremen. Die Laser-Community trifft sich zum 13. Laser Anwender Forum LAF 2024 im Veranstaltungszentrum des Mercedes-Benz Kundencenters in Bremen. Auf der zweitägigen Konferenz am 27….