Ortsaufgelöste Chiralitätsbestimmung in polykristallinen Festkörpern

Äquivalente Strukturfragmente der linkshändigen und rechtshändigen Strukturvariante von β-Mn. Die schraubenförmigen Atomanordnungen werden durch Mangan Atome gebildet, die unterschiedliche Wyckhoff Positionen besetzen (Farbkennung).
MPI CPfS

Links- oder rechtshändig…

Die ortsaufgelöste Bestimmung welche der beiden enantiomorphen Strukturvarianten – die linkshändige oder die rechtshändige – einer chiralen Phase in einem polykristallinen Material vorliegt, steht im Zentrum unserer Veröffentlichung in Science Advances. Anhand von EBSD (electron backscatter diffraction) Messungen wird dies erstmals für die chiralen Elementstruktur β-Mn gezeigt für die eine Bestimmung der Händigkeit mit üblichen Röntgenbeugungsverfahren bisher nicht möglich ist.

Links-(rot)- und rechtshändige (blau) β-Mn Körner. Diese Verteilungskarte ist dem lichtoptischen Gefügebild einer eingebetteten und metallographisch polierten Mangan Probe überlagert (kl. Kreis: ∅ = 500 µm).
MPI CPfS

Links- oder Rechtshändigkeit ist eine Symmetrieeigenschaft, die viele auch makroskopische Objekte ausweisen und die insbesondere für die Bioaktivität von organischen Molekülen von immenser Bedeutung ist. Chiralität ist auch für physikalische oder chemische Eigenschaften wie optische Aktivität oder Enantioselektivität von kristallinen Festkörpern oder deren Ober-flächen relevant. Bei chiralen, metallischen Phasen sind unkonventionelle Supraleitung und ungewöhnliche, magnetische Ordnungszustände mit der Chiralität der zugrunde liegenden Kristallstruktur verknüpft. Trotz dieses Zusammenhangs zwischen der Chiralität und den Eigenschaften eines Materials ist der Nachweis häufig schwierig, da links- und rechtshändige Strukturvarianten sich in ihrer Wirkung aufheben oder zumindest abschwächen können.

Nicht immer lassen sich von chiralen Phasen Legierungen herstellen, die nur eine der beiden Strukturvarianten enthält. Häufig liegen beide Strukturvarianten in einem polykristallinen Material vor. Für systematische Untersuchungen ist es daher wichtig die Händigkeit mit guter Ortsauflösung in bestimmen zu können.

In der vorliegenden Arbeit wird gezeigt, dass mit Hilfe des EBSD (Electron backscatter diffraction) Verfahrens die Verteilung der enantiomorphen Strukturvarianten nicht nur in polykristallinen Materialien von mehrkomponentigen Phasen bestimmt werden kann, sondern auch für die chirale Elementstruktur β-Mn.

Der Unterschied zwischen mehrkomponentigen Kristallstruktu-ren und der Elementstruktur ist deshalb von besonderer Bedeutung, da das Röntgenbeugungsverfahren, das üblicherweise zur Bestimmung der Händigkeit verwendet wird, für eine chirale Elementstruktur wie β-Mn keine Aussage liefert. Seit einigen Jahren ist das EBSD ein etabliertes Verfahren, bei dem anhand von Kikuchi Linien die lokale Kristallorientierung in einem polykristallinen Material bestimmt werden kann. Das EBSD Verfahren wird im Rasterelektronen-mikroskop durchgeführt. Es stellt daher eine vergleichsweise einfache Methode dar, mit der lokale, kristallographische Eigenschaften eines polykristallinen Materials bestimmt werden können.

Die Kikuchi-Linien entstehen hierbei durch Beugung der Elektronen an einer stark gekippten, planen Oberfläche. Übliche Verfahren zur Auswertung der EBSD Bilder lassen jedoch keine Aussage über die Händigkeit einer Phase zu. Erst die Berücksichtigung von dynamischer Elektronenmehrfachstreuung in den Simulationsrechnungen liefert Unterschiede in den Kikuchi-Linien der beiden enantiomorphen Strukturvarianten. Eine Zuordnung der Händigkeit erfolgt durch die bessere Übereinstimmung des experimentellen EBSD Bildes mit einem der beiden simulierten Bilder.

Die experimentellen Untersuchungen wurden für β-Mn und die strukturell eng verwandten mehrkomponentigen Verbindung Pt2Cu3B durchgeführt. Für beide Phasen wurde anhand der EBSD Bilder die Verteilung der beiden enantiomorphen Strukturvarianten bestimmt. Für die anschließenden Röntgenbeugungsuntersuchungen wurden mit Hilfe der Xenon-FIB (focused ion beam) Technik Kristalle aus homogenen Bereichen der polykristallinen Materialien heraus-geschnitten. Anhand der Röntgenbeugungsdaten konnte lediglich die Händigkeit der Pt2Cu3B Kristalle bestimmt werden. Die Bestimmung von Bereichen, die nur eine der beiden enanti-omorphen Strukturvarianten enthält, vereinfacht somit wesentlich die Herstellung von Materialien mit definierter Händigkeit.

Wissenschaftliche Ansprechpartner:

Ulrich Burkhardt

Originalpublikation:

Science Advances 14 May 2021: Vol. 7, no. 20, eabg0868
DOI: 10.1126/sciadv.abg0868

Weitere Informationen:

https://www.cpfs.mpg.de/3312946/20210531?c=2327

Media Contact

Dipl.-Übers. Ingrid Rothe Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Chemische Physik fester Stoffe

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Sensoren für „Ladezustand“ biologischer Zellen

Ein Team um den Pflanzenbiotechnologen Prof. Dr. Markus Schwarzländer von der Universität Münster und den Biochemiker Prof. Dr. Bruce Morgan von der Universität des Saarlandes hat Biosensoren entwickelt, mit denen…

3D-Tumormodelle für Bauchspeicheldrüsenkrebsforschung an der Universität Halle

Organoide, Innovation und Hoffnung

Transformation der Therapie von Bauchspeicheldrüsenkrebs. Bauchspeicheldrüsenkrebs (Pankreaskarzinom) bleibt eine der schwierigsten Krebsarten, die es zu behandeln gilt, was weltweite Bemühungen zur Erforschung neuer therapeutischer Ansätze anspornt. Eine solche bahnbrechende Initiative…

Leuchtende Zellkerne geben Schlüsselgene preis

Bonner Forscher zeigen, wie Gene, die für Krankheiten relevant sind, leichter identifiziert werden können. Die Identifizierung von Genen, die an der Entstehung von Krankheiten beteiligt sind, ist eine der großen…