Parasiten überlassen nichts dem Zufall

Der Bandwurm Schistocephalus solidus in der Leibeshöhle seines zweiten Zwischenwirtes, dem Dreistacheligen Stichling. Obwohl dieser Parasit in dem kleinen Fisch zu seiner endgültigen Größe heranwächst, handelt es sich hierbei noch um ein Larvenstadium (Plerocercoid). Erst wenn die Bandwürmer (mit dem Wirt) in den Darm eines Fisch fressenden Vogels gelangen, werden sie zu geschlechtsreifen Erwachsenen und produzieren innerhalb weniger Tage enorme Mengen an Eiern, bevor sie absterben. Bild: MPI für Evolutionsbiologie<br>

Zahlt sich für einen Parasiten ein Lebenszyklus aus, der mehrere Wirte bis zu seiner Reproduktion benötigt? Dann sollte der Parasit seine Zeit im ersten und im folgenden Wirt so kombinieren, dass sein Wachstum insgesamt maximal wird. Wissenschaftler des Max-Planck-Instituts für Evolutionsbiologie in Plön konnten zusammen mit Kollegen der Universität Liverpool erstmals theoretisch und empirisch nachweisen, dass Parasiten den Zeitpunkt des Wechsels von einem zum anderen Wirt optimieren. Sie manipulieren das Verhalten des ersten Wirts vor dem optimalen Zeitpunkt so, dass der Wechsel unterdrückt wird, und danach so, dass er induziert wird. Diese Erkenntnisse könnten ganz neue Ansätze für die Bekämpfung von Parasiten des Menschen liefern. (Evolution, Juni 2009)

Parasitismus ist eine äußerst erfolgreiche Lebensform – mehr als 40 Prozent aller Arten weltweit leben parasitär. Und auch die Liste jener Parasiten, die den Menschen befallen und eine Vielzahl schwerwiegender Erkrankungen auslösen können, ist lang: Dazu gehören die durch parasitäre Einzeller ausgelöste Malaria ebenso wie die Schlafkrankheit oder die durch den Pärchenegel Schistosoma hervorgerufene Bilharziose.

Alle diese Schmarotzer leben auf Kosten ihres Wirts und haben sich dabei hochgradig auf ihn spezialisiert. Oft beschränkt sich ihr Lebensraum nicht nur auf einen einzigen Wirt – tatsächlich wechseln viele Parasiten im Laufe ihres Lebenszyklus den Wirt: So werden sie von einem ersten Wirt durch die Nahrung aufgenommen, wachsen heran, wechseln in einen zweiten und manchmal sogar in einen dritten. Erst hier reproduzieren sie sich dann und ihre Nachkommen beginnen den Lebenszyklus von neuem.

Seit über 100 Jahren untersuchen Parasitologen diese komplexen Zyklen bis hinunter auf molekulare Ebene, doch die Frage, warum Parasiten ihren Wirt wechseln, blieb bisher unbeantwortet. „Dieser Lebenszyklus ist so riskant, dass man sich schwer vorstellen kann, wie sich eine solche Abfolge von Wirtswechseln für den Parasiten insgesamt lohnen kann“, erklärt Manfred Milinski, Direktor am Max-Planck-Institut für Evolutionsbiologie in Plön. Dennoch müssen komplexe Lebenszyklen von Parasiten eine Erfolgsstrategie sein, sonst hätten sie sich nicht im Laufe der Evolution entwickelt.

2003 veröffentlichte der Evolutionstheoretiker Geoff A. Parker von der Universität Liverpool eine generelle Theorie zur Evolution des Wirtswechsels. Parker und Milinski taten sich zusammen, um an einem Modellparasiten die Voraussagen der Theorie zu testen. Theorie und Experimente mussten dazu an diesen entsprechend angepasst werden. Dabei handelt es sich um den Bandwurm Schistocephalus solidus. Im Plöner Max-Planck-Institut haben die Forscher alle Schritte seines komplexen Zyklus experimentell untersucht: Seine freischwimmende Larve muss zunächst von einem Hüpferling, einem kleinen Ruderfußkrebs (Copepode), erbeutet werden. In diesem wächst die Larve über zwei bis vier Wochen heran. Dann muss der Hüpferling von einem Dreistachligen Stichling gefressen werden – nur in diesem kann die Larve innerhalb von 3 Monaten enorm wachsen; in jedem anderen Fisch würde sie sterben. Der Stichling wiederum muss die Beute eines Vogels, zum Beispiel eines Reihers werden, denn erst in diesem paart sich der Bandwurm in seinem Endstadium. Die Eier gehen mit dem Vogelkot ins Wasser und der Zyklus beginnt aufs Neue.

In aufwändigen Transfer-Experimenten infizierten Milinskis Mitarbeiterinnen Katrin Hammerschmidt und Kamilla Koch dreitausend Copepoden mit je einer Bandwurmlarve und ließen sie entweder 11, 21 oder 31 Tage wachsen bevor sie die infizierten Copepoden an je einen Stichling verfütterten. Nach 47 oder 63 Tagen Wachstum im Stichling wurden die Larven in den Vogel-Endwirt überführt, der durch ein In-vitro-System, einen „Glasvogel“, ersetzt worden war. Die im Vogel produzierten Eier des Bandwurms wurden aufgefangen und zum Schlüpfen gebracht. Die Frage, die die Forscher auf diese Weise zu beantworten hofften, lautete: Welche Kombination aus Zeit im Copepoden und Zeit im Stichling würde dem Bandwurm die höchste Darwinsche Fitness, also die höchste Anzahl geschlüpfter eigener Nachkommen bescheren?

In Liverpool entwickelten Geoff Parker und James Chubb mit den Ergebnissen der Transfer-Experimente ein mathematisches Modell, mit dem sie die optimale Zeit, die der Bandwurm im Copepoden wachsen sollte, vorhersagen konnten. „Danach gibt es ein optimales Zeitfenster von nur 2 Tagen – zwischen Tag 13 und Tag 15, in dem der Parasit den Wirt wechseln sollte“, sagt Katrin Hammerschmidt. Würde es der Bandwurm schaffen, z.B. durch chemische Signale das Verhalten des Copepoden so zu manipulieren, dass er mit hoher Wahrscheinlichkeit vom nächsten Wirt, dem Stichling, gefressen würde?

„Der Clou war ein weiteres Experiment, in dem wir zeigen konnten, dass der Wechsel in den Stichlingswirt in der Mitte dieses ohnehin schon kleinen Zeitfensters tatsächlich durch parasitäre Manipulation am wahrscheinlichsten ist“, freut sich Milinski (Abbildung 2). Damit haben die Evolutionsbiologen zum ersten Mal den Nachweis geliefert, dass sich ein Wirtswechsel für den Parasiten lohnt, weil er so optimiert ist, dass er die Fitness des Parasiten maximiert, „und das heißt in diesem Fall, die Anzahl seiner Nachkommen im Vogel“, so der Max-Planck-Forscher.
Passend zum Darwin-Jahr haben die Forscher somit ein weiteres Geheimnis der Evolution gelüftet, nämlich warum Parasitismus eine so erfolgreiche Lebensform auf unserem Planeten ist. Doch möglicherweise könnten diese Erkenntnisse irgendwann auch einen praktischen Nutzen entfalten: „Man könnte neue Wege in der Malaria-Bekämpfung einschlagen und versuchen, das Kosten-Nutzen-Verhältnis des Wirtswechsels von der Mücke zum Menschen zu beeinflussen. Das ist natürlich noch in weiter Ferne, aber zumindest die Denkmöglichkeit ist jetzt da“, sinnt Milinski. „Evolutionsbiologische Schädlingsbekämpfung“ sozusagen – darüber hat bisher vermutlich wirklich noch niemand nachgedacht.

[CB]

Originalveröffentlichung:

Katrin Hammerschmidt, Kamilla Koch, Manfred Milinski, James C. Chubb und Geoff A. Parker

When to go: optimization of host switching in parasites with complex life cycles.Evolution 64 (Juni 2009)

Geoff. A. Parker, Michael A. Ball, James C. Chubb, Katrin Hammerschmidt und Manfred Milinski
When should a trophically transmitted parasite manipulate its host?
Evolution 63-2; 448-458 (2009)
Weitere Informationen erhalten Sie von:
Prof. Dr. Manfred Milinski
Max-Planck-Institut für Evolutionsbiologie, Plön
Tel.: +49 4522 763-254
E-Mail: milinski@evolbio.mpg.de

Media Contact

Dr. Felicitas von Aretin Max-Planck-Gesellschaft

Weitere Informationen:

http://www.mpg.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Teilnehmer des Gesundes Lebensstilprogramms zur Bewältigung chronischer Kreuzschmerzen

Zurück zu den Grundlagen: Gesunder Lebensstil reduziert chronische Rückenschmerzen

Rückenschmerzen im unteren Rückenbereich sind weltweit eine der Hauptursachen für Behinderungen, wobei viele Behandlungen wie Medikamente oft keine dauerhafte Linderung bieten. Forscher des Centre for Rural Health der Universität Sydney…

3D-Tumormodell für Retinoblastomforschung mit Fokus auf Tumor-Umgebungs-Interaktionen.

Retinoblastom: Aufschlussreiche Untersuchung von Tumorzellen der Netzhaut

Ein Forschungsteam der Medizinischen Fakultät der Universität Duisburg-Essen und des Universitätsklinikums Essen hat ein neues Zellkulturmodell entwickelt, mit dem die Wechselwirkungen zwischen Tumorzellen und ihrer Umgebung beim Retinoblastom besser untersucht…

Private Brunnen als Notwasserversorgung zur Stärkung der Katastrophenresilienz.

Eine gut erledigte Aufgabe: Wie Hiroshimas Grundwasserstrategie bei der Bewältigung von Überschwemmungen half

Grundwasser und multilaterale Zusammenarbeit in den Wiederaufbaubemühungen milderten die Wasserkrise nach der Überschwemmung. Katastrophen in Chancen umwandeln Die Gesellschaft ist oft anfällig für Katastrophen, aber wie Menschen während und nach…