Peptide auf interstellarem Eis
Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging man jedoch davon aus, dass das nicht möglich ist, wenn in dem molekularen Eis, das das Staubkorn bedeckt, Wasser vorhanden ist – was aber meistens der Fall ist. Nun fand das Team in einer Kooperation mit der französischen Universität Poitiers heraus, dass die Gegenwart von Wassermolekülen kein großes Hindernis dafür ist, dass Peptide auf solchen Staubpartikeln entstehen. Das berichten die Forschenden im Fachmagazin „Science Advances“.
Chemie im eisigen Vakuum
„Wir haben in einer Vakuumkammer Bedingungen nachgestellt, wie sie im Weltall herrschen und dabei auch die Substanzen hinzugegeben, wie sie in sogenannten molekularen Wolken vorkommen“, erklärt Krasnokutski. Diese Substanzen sind Ammoniak, atomarer Kohlenstoff und Kohlenmonoxid. „Damit sind alle chemischen Elemente vorhanden, aus denen einfache Peptide bestehen“, ergänzt der Physiker.
Aus diesen Ausgangsstoffen, beschreibt Krasnokutski, entstehen zunächst chemische Vorstufen von Aminosäuren: sogenannte Aminoketene. Diese verbinden sich schließlich zu Ketten, sodass Polypeptide vorliegen. „Bisher war die Vermutung, dass die einzelnen Aminoketene sich zu Peptiden verbinden, wobei Wasser frei wird“, führt der Wissenschaftler aus. Für diesen Schritt könnte es also entscheidend sein, dass kein Wasser zugegen ist, da dies die Reaktion behindern würde. „Die meisten interstellaren Staubkörner sind jedoch mit wasserhaltigem molekularem Eis bedeckt“, sagt Krasnokutski. Daher war die Annahme bislang, dass, wenn sich Peptide im Weltall bilden, das nur in geringem Maße geschieht.
Präzise Analyse in Frankreich
„Die hochpräzisen massenspektrometrischen Untersuchungen, die nun an der Universität Poitiers möglich waren, zeigten jedoch, dass anwesendes Wasser im molekularen Eis die Bildung von Peptiden zwar um fünfzig Prozent verlangsamt, sie aber trotzdem entstehen“, erklärt er. „Wenn man die Zeitskalen betrachtet, in denen astronomische Prozesse ablaufen, ist diese Verlangsamung so gut wie vernachlässigbar.“
Die Frage, ob nun die ersten Biomoleküle auf unserem Planeten terrestrischen oder extraterrestrischen Ursprungs sind – oder beides – wird wahrscheinlich bis auf weiteres nicht eindeutig geklärt werden. Der Weltraum als Quelle unseres Lebens ist aber nicht auszuschließen, wie diese Entdeckung zeigt.
Wissenschaftliche Ansprechpartner:
Dr. Sergiy Krasnokutskiy
Institut für Festkörperphysik der Friedrich-Schiller-Universität Jena
Helmholtzweg 3
07743 Jena
Tel.: 03641 / 947306
E-Mail: sergiy.krasnokutskiy@uni-jena.de
Originalpublikation:
Serge A. Krasnokutski, Cornelia Jäger, Thomas Henning, Claude Geffroy, Quentin. B. Remaury, Pauline Poinot, „Formation of extraterrestrial peptides and their derivatives“, Sciences Advances, 2024, DOI: https://doi.org/10.1126/sciadv.adj7179
Media Contact
Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Selen-Proteine …
Neuer Ansatzpunkt für die Krebsforschung. Eine aktuelle Studie der Uni Würzburg zeigt, wie ein wichtiges Enzym in unserem Körper bei der Produktion von Selen-Proteinen unterstützt – für die Behandlung von…
Pendler-Bike der Zukunft
– h_da präsentiert fahrbereiten Prototyp des „Darmstadt Vehicle“. Das „Darmstadt Vehicle“, kurz DaVe, ist ein neuartiges Allwetter-Fahrzeug für Pendelnde. Es ist als schnelle und komfortable Alternative zum Auto gedacht, soll…
Neuartige Methode zur Tumorbekämpfung
Carl-Zeiss-Stiftung fördert Projekt der Hochschule Aalen mit einer Million Euro. Die bisherige Krebstherapie effizienter gestalten bei deutlicher Reduzierung der Nebenwirkungen auf gesundes Gewebe – dies ist das Ziel eines Projekts…