“Pflanzenkino” zeigt den Fluss der Energie

Die Gewebe eines Keimlings unterscheiden sich im ATP-Gehalt und reichen von hohen (rot) zur niedrigeren Werten (blau). (c) Stephan Wagner

Wenn bei einem Auto der Tank leer ist, bewegt es sich keinen Meter mehr. Genauso ergeht es Lebewesen – nur das sie nicht etwa Diesel oder Benzin brauchen, sondern Adenosintriphosphat (ATP). Dabei handelt es sich um ein chemisches Molekül, das universell und unmittelbar Energie bereitstellt. Dieses Prinzip funktioniert bei Menschen, Tieren und Pflanzen gleichermaßen: kein Leben, kein Wachstum, keine Entwicklung ohne ATP.

„Unsere Arbeit macht diese Energie sichtbar“, sagt Dr. Markus Schwarzländer, Leiter einer Emmy-Noether-Gruppe am Institut für Nutzpflanzenwissenschaften und Ressourcenschutz (INRES) der Universität Bonn. „Und zwar in lebenden Pflanzen – vom kleinsten Zellorganell bis zum kompletten Keimling“, ergänzt sein Kollege Dr. Stephan Wagner.

Unter Federführung der beiden Biochemiker haben Wissenschaftler aus Deutschland, Italien, China, England und Dänemark einen innovativen Weg entwickelt, ATP im lebenden Organismus mit Hilfe eines fluoreszierenden Proteins sichtbar zu machen.

Hierfür nutzte das Team die Methode von Takeharu Nagai aus Osaka in Japan, mit der ATP an ein fluoreszierendes Protein einer Qualle bindet. Die japanischen Wissenschaftler haben diese Technik ursprünglich in Säugetieren entwickelt, die Forscher der Universität Bonn haben sie nun für die Nutzung an Pflanzen angepasst.

„Mit dieser Technologie wird es möglich, in Echtzeit zu verfolgen, wo wieviel ATP in lebenden Pflanzen vorliegt“, sagt Erstautorin Valentina De Col von der Universität Udine (Italien), die am INRES einen Forschungsaufenthalt im Rahmen ihrer Promotion absolviert hat.

Vom kleinsten Zellorganell bis zur ganzen Pflanze

Der universelle Energieträger ATP gilt als gut erforscht, allerdings handelte es sich bei den bisherigen Untersuchungen weitgehend um Momentaufnahmen. Ganze Pflanzen oder Teile davon wurden pulverisiert und darin die Menge an ATP bestimmt. „Das ist, wie wenn man ein Auto komplett zerlegt und anhand der einzelnen Teile nachvollziehen will, wie es funktioniert“, zieht Schwarzländer einen Vergleich. „Dagegen sieht man mit unserer Technologie der laufenden Maschine bei der Arbeit zu.“

Die „Maschine“ sind Keimlinge der Ackerschmalwand (Arabidopsis thaliana). Die Wissenschaftler untersuchten mit ihrer Methode winzige Arabidopsis-Organellen wie etwa die Zellkraftwerke (Mitochondrien), genauso aber Organe wie Wurzeln oder sogar ganze Keimlinge am Mikroskop und mit einem Fluoreszenz-Analysegerät.

Anhaltspunkte für neue Züchtungen

Das „Pflanzenkino“ zeigte in Echtzeit die Verteilung der Energie. „Bei normaler Versorgung mit Wasser, Luft und Licht liegt in den Wurzeln weniger ATP vor als zum Beispiel in den grünen Blättern“, berichtet Wagner. Offenbar bilden sich an den Stätten der Umwandlung von Sonnenlicht in chemische Energie auch mehr von den Energieträgern. Aber wie reagiert das ATP in Pflanzen unter Stress? Um diese Frage zu beantworten, setzten die Wissenschaftler die leuchtenden Arabidopsis-Keimlinge unter Wasser und schnitten sie damit von der lebenswichtigen Sauerstoffzufuhr ab.

„Dadurch kam die Produktion von ATP nicht sofort zum Erliegen, sondern verringerte sich stufenweise“, berichtet Schwarzländer. Es muss also unterschiedliche Anpassungsprozesse geben, mit der die Pflanze versucht, sich gegen den zunehmenden Sauerstoffmangel zu wappnen und ihren Energiehaushalt aufrecht zu erhalten.

„Eine entscheidende Frage ist nun, ob sich diese Schutzprogramme stimulieren lassen, um neue Pflanzensorten zu züchten, die besser mit Stress zurechtkommen“, verweist Schwarzländer auf die Chancen der neuen Technologie für weitergehende Forschungsarbeiten.

Mit der innovativen Methode ließe sich absehbar zum Beispiel auch untersuchen, wie Krankheitserreger in den Energiehaushalt von Pflanzen eingreifen und wie die Wohngemeinschaft zwischen Wurzeln und bestimmten Pilzen (Mykorrhiza) zum gegenseitigen Nutzen genau funktioniert.

Publikation: ATP sensing in living plant cells reveals tissue gradients and stress dynamics of energy physiology, Journal “eLIFE”, Internet: https://doi.org/10.7554/eLife.26770

Kontakt für die Medien:

Dr. Markus Schwarzländer
Plant Energy Biology Lab
Institut für Nutzpflanzenwissenschaften und Ressourcenschutz
Universität Bonn
Tel. 0228/7354266
E-Mail: markus.schwarzlander@uni-bonn.de

Dr. Stephan Wagner
Plant Energy Biology Lab
Institut für Nutzpflanzenwissenschaften und Ressourcenschutz
Universität Bonn
Tel. 0228/7354267
E-Mail: stephan.wagner@uni-bonn.de

Media Contact

Johannes Seiler idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.uni-bonn.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Sensoren für „Ladezustand“ biologischer Zellen

Ein Team um den Pflanzenbiotechnologen Prof. Dr. Markus Schwarzländer von der Universität Münster und den Biochemiker Prof. Dr. Bruce Morgan von der Universität des Saarlandes hat Biosensoren entwickelt, mit denen…

3D-Tumormodelle für Bauchspeicheldrüsenkrebsforschung an der Universität Halle

Organoide, Innovation und Hoffnung

Transformation der Therapie von Bauchspeicheldrüsenkrebs. Bauchspeicheldrüsenkrebs (Pankreaskarzinom) bleibt eine der schwierigsten Krebsarten, die es zu behandeln gilt, was weltweite Bemühungen zur Erforschung neuer therapeutischer Ansätze anspornt. Eine solche bahnbrechende Initiative…

Leuchtende Zellkerne geben Schlüsselgene preis

Bonner Forscher zeigen, wie Gene, die für Krankheiten relevant sind, leichter identifiziert werden können. Die Identifizierung von Genen, die an der Entstehung von Krankheiten beteiligt sind, ist eine der großen…