Pilz sortiert Zellwandproteine

Dfg5-Enzyme von Chaetomium thermophilum (links) bewirken die Übertragung von Zellwandproteinen (rechts, grün) aus der Plasmamembran (rot) auf Zuckerstränge der Oberfläche (vollständige BU: http://www.uni-marburg.de).

Viktoria Reithofer, L.-O. Essen
Das Bild darf nur für die Berichterstattung über die zugehörige Veröffentlichung verwendet werden.

Eine Marburger Forschungsgruppe aus Biologie und Chemie hat die Struktur eines Enzyms aufgeklärt, das zum Aufbau der Zellwand vieler Pilze wie Bäckerhefe oder Schimmel beiträgt – ein erster Schritt, um diese Organismen wirksam bekämpfen zu können. Die Fachleute veröffentlichten ihre Ergebnisse im Wissenschaftsmagazin PNAS.

Pilze sind allgegenwärtig, sie nisten sich in Gebäuden ein oder rufen Krankheiten hervor, andere machen sich bei der Nahrungsmittelproduktion nützlich.  „Die Bäckerhefe und andere Pilzarten weisen ungewöhnlich dicke Zellwände auf, die bis zu einem Drittel des Trockengewichts dieser Organismen ausmachen“, erklärt der Marburger Biologe Professor Dr. Hans-Ulrich Mösch, einer der Leitautoren der Publikation. „Diese Panzerung erlaubt es Pilzen, allen möglichen Stressfaktoren der Umgebung zu widerstehen.“

Die Zellwände tragen Oberflächenproteine, ergänzt Professor Dr. Lars-Oliver Essen vom Marburger Fachbereich Chemie, ein weiterer Leitautor: „Diese Proteine ermöglichen es den Pilzen, sich am Untergrund anzuheften.“ Das können Nahrungsquellen sein, aber auch die Gewebe von Tieren oder Pflanzen, wenn es sich bei den Pilzen um Krankheiterreger oder Schädlinge handelt.

Wie gelangen die Proteine zur Zellwand? Um das herauszufinden, nahm das Forschungsteam das Enzym Dfg5 unter die Lupe; es sorgt dafür, dass die Oberflächenproteine zur Zellwand gelangen, statt in der darunterliegenden Membran zu verbleiben. „Wir haben untersucht, wie Dfg5-Transglykosidasen dazu beitragen, dass sich die entsprechenden Proteine an der Oberfläche der Zellwand anheften können“, legt Essen dar.

Für ihre Untersuchungen verwendete das Team den Pilz Chaetomium thermophilum, der in Dung oder Kompost zu finden ist. „Da diese Art ziemlich temperatur-unempfindlich ist, sind ihre Proteine weitaus stabiler für strukturbiologische Untersuchungen“, erläutert Mitverfasserin Gesa Felicitas Schmitz, die ihre Doktorarbeit bei Mösch anfertigt.

Aufgrund der gewonnenen Daten entwirft das Forschungsteam eine Modellvorstellung davon, wie das Dfg5-Enzym arbeitet. Sie beschreiben den Mechanismus als Sortiervorgang: Das Enzym erkennt, wie die Proteine in der Membran unterhalb der Zellwand verankert sind.

„Je nach Art des Ankers vermag es genau zu unterscheiden, ob ein Protein in die Zellwand weiter transportiert wird oder in der Plasmamembran verbleiben soll“, führt Essens Mitarbeiter Dr. Marian Samuel Vogt aus, der ebenfalls als Koautor firmiert. „Diesen Transportmechanismus gibt es nur bei Pilzen, jedoch nicht bei Pflanzen und Tieren.“

„Unsere Befunde haben offengelegt, wo neue Wirkstoffe gegen Pilze ansetzen können, damit diese mit ihren Oberflächenproteinen nicht mehr dort anheften können, wo wir es nicht wünschen“, sagt Essen.

Lars-Oliver Essen lehrt Biochemie in Marburg, Hans-Ulrich Mösch ist Professor für Genetik an der Philipps-Universität. Beide gehören auch dem Marburger „LOEWE“-Zentrum für Synthetische Mikrobiologie an. Neben ihren Arbeitsgruppen beteiligte sich der Chemiker Dr. Daniel Varón Silva vom Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam an der Studie.

Die Deutsche Forschungsgemeinschaft unterstützte die zugrundeliegenden Forschungsarbeiten finanziell über den Marburger Sonderforschungsbereich 987 „Mikrobielle Diversität in der umweltabhängigen Signalantwort“.

Originalveröffentlichung: Marian Samuel Vogt, Gesa Felicitas Schmitz & al.: Structural base for the transfer of GPI-anchored glycoproteins into fungal cell walls, PNAS 2020

Weitere Informationen:
Ansprechpartner: Professor Dr. Lars-Oliver Essen,
Fachgebiet Strukturbiochemie
Tel.: 06421 28-22032
E-Mail: essen@chemie.uni-marburg.de

Professor Dr. Hans-Ulrich Mösch,
Fachgebiet Genetik
Tel.: 06421 28-23013
E-Mail: hansulrich.moesch@biologie.uni-marburg.de

http://www.uni-marburg.de

Media Contact

Johannes Scholten Stabsstelle Hochschulkommunikation
Philipps-Universität Marburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Sensoren für „Ladezustand“ biologischer Zellen

Ein Team um den Pflanzenbiotechnologen Prof. Dr. Markus Schwarzländer von der Universität Münster und den Biochemiker Prof. Dr. Bruce Morgan von der Universität des Saarlandes hat Biosensoren entwickelt, mit denen…

3D-Tumormodelle für Bauchspeicheldrüsenkrebsforschung an der Universität Halle

Organoide, Innovation und Hoffnung

Transformation der Therapie von Bauchspeicheldrüsenkrebs. Bauchspeicheldrüsenkrebs (Pankreaskarzinom) bleibt eine der schwierigsten Krebsarten, die es zu behandeln gilt, was weltweite Bemühungen zur Erforschung neuer therapeutischer Ansätze anspornt. Eine solche bahnbrechende Initiative…

Leuchtende Zellkerne geben Schlüsselgene preis

Bonner Forscher zeigen, wie Gene, die für Krankheiten relevant sind, leichter identifiziert werden können. Die Identifizierung von Genen, die an der Entstehung von Krankheiten beteiligt sind, ist eine der großen…