Programmierbare DNA-Hydrogele
… für fortschrittliche Zellkulturen und personalisierte Medizin.
Das Team um Dr. Elisha Krieg am Leibniz-Institut für Polymerforschung Dresden hat eine dynamische DNA-vernetzte Matrix (DyNAtrix) entwickelt, indem es klassische synthetische Polymere mit programmierbaren DNA-Vernetzern kombiniert. Die hochspezifische und vorhersagbare Bindung der DNA verleiht den Materialien eine unvergleichliche Kontrolle über wichtige mechanische Eigenschaften. Die am 7. August in Nature Nanotechnology veröffentlichten Ergebnisse sind von hoher Relevanz für In-vitro-Zellkulturmaterialien für die biologische Forschung.
Die In-vitro-Kultur von biologischen Zellen ist für die biologische Forschung von großer Bedeutung. Die derzeit verfügbaren Zellkulturmaterialien haben jedoch erhebliche Nachteile. Viele von ihnen stammen aus tierischen Quellen, sind schlecht reproduzierbar und ihre mechanischen Eigenschaften lassen sich nur schwer bestimmen. Daher besteht ein dringender Bedarf, neue Ansätze zur Herstellung weicher und biokompatibler Materialien mit vorhersagbaren Eigenschaften zu erforschen.
Das Team um Dr. Elisha Krieg am Leibniz-Institut für Polymerforschung Dresden hat eine dynamische DNA-vernetzte Matrix (DyNAtrix) entwickelt, indem es klassische synthetische Polymere mit programmierbaren DNA-Vernetzern kombiniert. Die hochspezifische und vorhersagbare Bindung der DNA verleiht den Materialien eine unvergleichliche Kontrolle über wichtige mechanische Eigenschaften.
In ihrer am 7. August in Nature Nanotechnology veröffentlichten Arbeit berichten sie, dass DyNAtrix eine systematische Kontrolle über seine viskoelastischen, thermodynamischen und kinetischen Eigenschaften ermöglicht, indem die DNA-Sequenzinformationen verändert werden. Die vorhersagbare Stabilität der DNA-Vernetzungen ermöglicht eine kontrollierte Anpassung der Spannungs-Relaxations-Eigenschaften, die die Eigenschaften von lebendem Gewebe nachahmen.
DyNAtrix ist selbstheilend und für den 3D Druck geeignet. Darüber hinaus zeichnet es sich durch eine hohe Stabilität aus, wobei es mithilfe von Enzymen auch kontrolliert wieder abgebaut werden kann. Zellkulturen mit menschlichen mesenchymalen Stromazellen, pluripotenten Stammzellen, Nierenzysten von Hunden und menschlichen Trophoblastenorganoiden belegen die hohe Biokompatibilität des Materials.
Die programmierbaren Eigenschaften von DyNAtrix lassen auf ein vielversprechendes Potenzial für neue Anwendungen in der Gewebekultur schließen. Die laufenden Studien konzentrieren sich auf die Auswirkungen der viskoelastischen Eigenschaften auf die Entwicklung von Zellen und Organoiden. In Zukunft kann DyNAtrix in der Grundlagenforschung und der personalisierten Medizin eingesetzt werden, zum Beispiel, um von Patienten stammende Gewebemodelle im Labor zu reproduzieren und zu untersuchen.
Wissenschaftliche Ansprechpartner:
Dr. Elisha Krieg, krieg@ipfdd.de
Originalpublikation:
https://www.nature.com/articles/s41565-023-01483-3
https://www.ipfdd.de/de/kommunikation/aktuelles/news-detailseite/newsitem/1818/
Media Contact
Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Spitzenforschung in der Bioprozesstechnik
Das IMC Krems University of Applied Sciences (IMC Krems) hat sich im Bereich Bioprocess Engineering (Bioprozess- oder Prozesstechnik) als Institution mit herausragender Expertise im Bereich Fermentationstechnologie etabliert. Unter der Leitung…
Datensammler am Meeresgrund
Neuer Messknoten vor Boknis Eck wurde heute installiert. In der Eckernförder Bucht, knapp zwei Kilometer vor der Küste, befindet sich eine der ältesten marinen Zeitserienstationen weltweit: Boknis Eck. Seit 1957…
Rotorblätter für Mega-Windkraftanlagen optimiert
Ein internationales Forschungsteam an der Fachhochschule (FH) Kiel hat die aerodynamischen Profile von Rotorblättern von Mega-Windkraftanlagen optimiert. Hierfür analysierte das Team den Übergangsbereich von Rotorblättern direkt an der Rotornabe, der…