Protein steuert Verklumpung der Blutplättchen bei Thrombose und Schlaganfall

Proteinstruktur von der TRPM7 Kinase-Domäne Prof. Thomas Dandekar, Universität Würzburg

So entwickelten Mäuse, bei denen das TRPM7 nur eine seiner beiden Funktionen erfüllte, nach einem Schlaganfall deutlich geringere Hirnschädigungen. Die Arbeit ist im Journal „Arteriosclerosis, Thrombosis, and Vascular Biology“ erschienen und wurde von den Herausgebern als Leitartikel veröffentlicht.

Blutplättchen dichten Verletzungen ab

Blutplättchen, fachsprachlich Thrombozyten, fließen mit dem Blutstrom durch den Körper. Normalerweise ähneln sie winzigen Frisbee-Scheiben. Bei einer Verletzung verändert sich ihre Gestalt: Binnen Minuten wachsen ihnen Dutzende tentakelartiger Ärmchen. Diese verhaken sich mit den Tentakeln benachbarter Thrombozyten, ganz ähnlich wie bei einem Klettverschluss. Es entsteht ein Pfropf, der das Loch in der Gefäßwand abdichtet und der in der Folge durch zusätzliche Gerinnungsprozesse weiter verstärkt wird.

Die Aktivierung der Blutplättchen unterliegt einer strengen Kontrolle. Ansonsten bestünde die Gefahr, dass sie sich ohne Not unterhaken und auch intakte Gefäße verstopfen. Ein wichtiger Regulator sind Kalzium-Ionen: Bei einer Verletzung nehmen die Blutplättchen Kalzium auf und leiten damit unter anderem ihren Gestaltwechsel ein. Als Gegenspieler fungieren dagegen Magnesium-Ionen, die die Aktivierung der Plättchen und damit die Bildung von Gerinnseln verhindern.

Das Zellprotein TRPM7 scheint an der Schnittstelle dieser beiden regulatorischen Prozesse zu stehen. „TRPM7 fungiert einerseits als Kanal, der Magnesium-Ionen in die Zelle lässt“, erklärt der Leiter der Studie, Dr. Attila Braun. „Ein anderer Teil des TRPM7 arbeitet zudem als Enzym, das in den Kalzium-Stoffwechsel der Blutplättchen eingreift. Wir konnten nun erstmals zeigen, dass dieses Enzym indirekt die Aufnahme von Kalzium-Ionen und somit die Verklumpung der Blutplättchen fördert.“

Mäuse hatten weniger Beeinträchtigungen

Dieser Nachweis gelang den Wissenschaftlern mit Hilfe von Mäusen, bei denen das TRPM7 seine Enzymfunktion eingebüßt hatte. „Die Kalziumaufnahme in die Thrombozyten war bei den Tieren dadurch vermindert“, betont Braun. „Als Kanal für Magnesium-Ionen war das TRPM7 dagegen weiterhin voll funktionstüchtig.“

Als Folge bildeten die Nager kaum noch größere Blutgerinnsel, wie sie beispielsweise bei einer Thrombose entstehen. Nach einem Schlaganfall entwickelten sie zudem deutlich weniger Hirnschädigungen. „Die abgestorbenen Regionen waren bei ihnen um 60 Prozent kleiner als bei normalen Mäusen“, sagt Braun. „Auch waren bei ihnen die neurologischen Folgen des Schlaganfalls wie etwa Lähmungserscheinungen erheblich schwächer ausgeprägt.“

Bislang war völlig unbekannt, welche physiologische Rolle die Enzymfunktion des TRPM7 spielt. „Unsere Arbeit ist ein erster Schritt, um diese Frage zu klären“, betont Braun. „Weitere Details müssen jetzt erforscht werden – wie auch die Frage, ob das TRPM7 im Menschen eine ähnliche Doppelrolle erfüllt wie in der Maus.“

Falls ja, haben die Erkenntnisse möglicherweise langfristig auch medizinische Relevanz. Denn Blutplättchen spiele eine wichtige Rolle bei der Entstehung von Schlaganfällen, Herzinfarkten und Thrombosen. Wirkstoffe, die ganz gezielt die enzymatische Funktion des TRPM7 hemmen, könnten daher eventuell irgendwann dazu beitragen, die Behandlung dieser schweren Erkrankungen zu verbessern.

Publikation:
Sanjeev K. Gotru, Wenchun Chen, Peter Kraft, Isabelle C. Becker, Karen Wolf, Simon Stritt, Susanna Zierler, Heike M. Hermanns, Deviyani Rao, Anne-Laure Perraud, Carsten Schmitz, René P. Zahedi, Peter J. Noy, Michael G. Tomlinson, Thomas Dandekar, Masayuki Matsushita, Vladimir Chubanov, Thomas Gudermann, Guido Stoll, Bernhard Nieswandt, Attila Braun: TRPM7 Kinase Controls Calcium Responses in Arterial Thrombosis and Stroke in Mice; Arteriosclerosis, Thrombosis, and Vascular Biology, Februar 2018; DOI: 10.1161/ATVBAHA.117.310391

Person:
Dr. Attila Braun forscht am Rudolf-Virchow-Zentrum der Universität Würzburg und am Universitätsklinikum Würzburg, im Institut für Experimentelle Biomedizin von Prof. Dr. Bernhard Nieswandt. Das Projekt entstand innerhalb des DFG Sonderforschungsbereich 688.

Über das Rudolf-Virchow-Zentrum:
Das Rudolf-Virchow-Zentrum gehört als Zentrale Einrichtung zur Universität Würzburg. Die Forschungsgruppen arbeiten auf dem Gebiet der Schlüsselproteine, die für die Funktion von Zellen und damit für Gesundheit und Krankheit besonders wichtig sind.

Kontakt:
Dr. Attila Braun (Rudolf-Virchow-Zentrum & Universitätsklinikum Würzburg)
Tel. 0931 3180410, attila.braun@virchow.uni-wuerzburg.de

Dr. Daniela Diefenbacher (Pressestelle, Rudolf-Virchow-Zentrum)
Tel. 0931 3188631, daniela.diefenbacher@uni-wuerzburg.de

http://www.rudolf-virchow-zentrum.de/aktuelles/aktuelles-details/article/protein…

Media Contact

Dr. Daniela Diefenbacher idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Selen-Proteine …

Neuer Ansatzpunkt für die Krebsforschung. Eine aktuelle Studie der Uni Würzburg zeigt, wie ein wichtiges Enzym in unserem Körper bei der Produktion von Selen-Proteinen unterstützt – für die Behandlung von…

Pendler-Bike der Zukunft

– h_da präsentiert fahrbereiten Prototyp des „Darmstadt Vehicle“. Das „Darmstadt Vehicle“, kurz DaVe, ist ein neuartiges Allwetter-Fahrzeug für Pendelnde. Es ist als schnelle und komfortable Alternative zum Auto gedacht, soll…

Neuartige Methode zur Tumorbekämpfung

Carl-Zeiss-Stiftung fördert Projekt der Hochschule Aalen mit einer Million Euro. Die bisherige Krebstherapie effizienter gestalten bei deutlicher Reduzierung der Nebenwirkungen auf gesundes Gewebe – dies ist das Ziel eines Projekts…