Proteine in ihrer natürlichen Umgebung beobachten

Laura Galazzo (links) und Enrica Bordignon nutzen winzige Teile von Antikörpern, um Proteine genau zu untersuchen. © RUB, Marquard

Über die Methode berichtet das Team um Prof. Dr. Enrica Bordignon und Dr. Laura Galazzo vom Exzellenzcluster Ruhr Explores Solvation Resolv (http://www.solvation.de/) in Zusammenarbeit mit der Gruppe von Prof. Dr. Markus Seeger von der Universität Zürich in der Zeitschrift PNAS vom 4. Februar 2020.

Nanobodies finden das Protein un d binden daran

Bisher konnte man Membranproteine nur isoliert untersuchen, wobei die Gefahr besteht, dass sie ihre für die Funktion ausschlaggebende Gestalt verlieren. Das Team von Resolv konnte sie nun in ihrer natürlichen Umgebung in der Membran von Escherichia-coli-Bakterien beobachten.

„Dort ist es sehr eng und voll“, beschreibt Enrica Bordignon. Der Trick des Teams besteht darin, zwei nur wenige Nanometer kleine Sequenzen von Antikörpern als Markierung zu benutzen, sogenannte Nanobodies. „Wir verwenden exakt die Sequenzen, die bestimmte Abschnitte des Proteins erkennen und daran binden können“, erklärt Laura Galazzo.

Die Auswahl der richtigen Nanobodies übernahm das Team von Markus Seeger. „Dank der von uns entwickelten Selektionsplattform, die die Immunisierung von Tieren umgeht, kann jedes Labor schnell synthetische Nanobodies für jeden Zweck erzeugen. Das bedeutet einen Schritt zu ihrer Verwendung in der strukturellen Biologie, wie diese Arbeit zeigt“, so Seeger.

An die beiden Nanobodies werden Gadolinium-Atome angehängt. Gadolinium wird auch als Kontrastmittel für Kernspintomografien eingesetzt und kann aufgrund seines Elektronenspins sichtbar gemacht werden. Da sich die so markierten Nanobodies schlecht in Bakterien einschleusen lassen, wurden diese nach außen umgestülpt, sodass das Innere der Membran außen zu liegen kam.

Signal nur bei einer bestimmten Gestalt

„Die Nanobodies binden sofort an die Sequenz des Membranproteins, die sie erkennen, und sind dann auch kaum noch von ihnen zu lösen“, so Enrica Bordignon. Die so behandelten Bakterien untersuchten die Forscherinnen und Forscher dann mittels Elektronenspinresonanz, englisch electron paramagnetic resonance, kurz EPR.

„Dabei konnten wir nur dann ein Signal empfangen, wenn sich zwei unserer unterschiedlichen Nanobodies in unmittelbarer Nähe zueinander befanden“, erklärt Laura Galazzo. Das war genau dann der Fall, wenn das Protein die Konformation einnimmt, die Wirkstoffe aus der Zelle herausschleust.

„Unsere Arbeit zeigt, dass die Methode, mit der wir Abstände im Bereich von 1,5 bis 6 Nanometern erreichen, funktioniert“, so Enrica Bordignon. „Im nächsten Schritt wollen wir die Nanobodies in Bakterien einschleusen, um künftig an lebenden Zellen beobachten zu können, wann das Membranprotein in welchem Zustand ist.“ „Diese Technik eröffnet ungeahnte Möglichkeiten“, sagt Laura Galazzo.

Förderung

Die Arbeiten wurden gefördert von der Deutschen Forschungsgemeinschaft im Rahmen des Exzellenzclusters Ruhr Explores Solvation Resolv, EXC-2033, Projektnummer 390677874, BO3000/1-2, INST 130/972-1 FUGG, und durch den Schweizerischen Nationalfonds (PP00P3_144823).

Originalveröffentlichung

Laura Galazzo, Gianmarco Meier, M. Hadi Timachi, Cedric A. J. Hutter, Markus A. Seeger, Enrica Bordignon: Spin-labeled nanobodies as protein conformational reporters for electron paramagnetic resonance in cellular membranes, in: PNAS, 2020, DOI: 10.1073/pnas.1913737117, https://www.pnas.org/content/early/2020/01/14/1913737117

Pressekontakt

Prof. Dr. Enrica Bordignon
Arbeitsgruppe EPR-Spektroskopie
Fakultät für Chemie und Biochemie
Ruhr-Universität Bochum
Tel.: +49 234 32 26239
E-Mail: enrica.bordignon@rub.de

Prof. Dr. Enrica Bordignon
Arbeitsgruppe EPR-Spektroskopie
Fakultät für Chemie und Biochemie
Ruhr-Universität Bochum
Tel.: +49 234 32 26239
E-Mail: enrica.bordignon@rub.de

Laura Galazzo, Gianmarco Meier, M. Hadi Timachi, Cedric A. J. Hutter, Markus A. Seeger, Enrica Bordignon: Spin-labeled nanobodies as protein conformational reporters for electron paramagnetic resonance in cellular membranes, in: PNAS, 2020, DOI: 10.1073/pnas.1913737117, https://www.pnas.org/content/early/2020/01/14/1913737117

http://Originalpaper: https://www.pnas.org/content/early/2020/01/14/1913737117
http://Presseinformation zur vorherigen Arbeit: https://news.rub.de/presseinformationen/wissenschaft/2019-06-17-medikamentenresi…

Media Contact

Meike Drießen idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Sensoren für „Ladezustand“ biologischer Zellen

Ein Team um den Pflanzenbiotechnologen Prof. Dr. Markus Schwarzländer von der Universität Münster und den Biochemiker Prof. Dr. Bruce Morgan von der Universität des Saarlandes hat Biosensoren entwickelt, mit denen…

3D-Tumormodelle für Bauchspeicheldrüsenkrebsforschung an der Universität Halle

Organoide, Innovation und Hoffnung

Transformation der Therapie von Bauchspeicheldrüsenkrebs. Bauchspeicheldrüsenkrebs (Pankreaskarzinom) bleibt eine der schwierigsten Krebsarten, die es zu behandeln gilt, was weltweite Bemühungen zur Erforschung neuer therapeutischer Ansätze anspornt. Eine solche bahnbrechende Initiative…

Leuchtende Zellkerne geben Schlüsselgene preis

Bonner Forscher zeigen, wie Gene, die für Krankheiten relevant sind, leichter identifiziert werden können. Die Identifizierung von Genen, die an der Entstehung von Krankheiten beteiligt sind, ist eine der großen…