Salz verklumpt Proteine, mehr Salz bringt sie in Lösung
Die Stoffgruppe der Proteine erfüllt in biologischen Systemen und Lebewesen zahlreiche lebenswichtige Aufgaben. Proteine sind nicht nur Baustoffe der Zellen, sondern zum Beispiel auch Signalstoffe und chemische Zellwerkzeuge.
Um die Vorgänge in Zellgeweben und anderen biologischen Systemen tiefgehend zu verstehen, müssen Forscher die Wechselwirkungen der Proteine mit anderen Stoffen sowie mit Wasser kennen. Forscher der Universität Tübingen unter der Leitung von Prof. Frank Schreiber vom Institut für Angewandte Physik haben in Zusammenarbeit mit Kollegen aus Saarbrücken und Oxford erstmals nachgewiesen, dass Proteine durch Zugabe von bestimmten Salzen sowohl zur Aggregation, zur „Zusammenklumpung“, als auch wieder in Lösung gebracht werden können.
Diese fundamentale Erkenntnis trägt dazu bei, die Eigenschaften von Proteinen besser zu verstehen. Die Forschungsergebnisse der deutsch-britischen Zusammenarbeit wurden heute von der Fachzeitschrift Physical Review Letters online vorab veröffentlicht (101, 148101, 2008). An der Arbeit beteiligt waren von der Universität Tübingen Prof. Frank Schreiber, Dr. Fajun Zhang und Stefan Zorn vom Institut für Angewandte Physik sowie Prof. Oliver Kohlbacher vom Zentrum für Bioinformatik.
Warum die Aggregation von Proteinen so wichtig ist, zeigen einige Beispiele: Sie spielt bei der Alzheimer-Krankheit und Prionenerkrankungen wie dem Rinderwahnsinn (BSE) und der Creutzfeldt-Jakob-Krankheit eine entscheidende Rolle. In einem ganz anderen Bereich ist die Kristallisation, eine kontrollierte Aggregation von Proteinen, entscheidend für die Aufklärung ihrer Struktur, die auch eine Voraussetzung für die Entwicklung neuer Medikamente ist. Eine zentrale Rolle für die Struktur und Funktion von Proteinen spielt die Wechselwirkung mit dem umgebenden Wasser und den darin enthaltenen Salzionen, positiv oder negativ geladenen Teilchen. Ein bekannter Effekt ist dabei, dass die Erhöhung der Salzkonzentration in einer Lösung zur Abschirmung von Ladungen auf den Proteinen führt. Dies verringert ihre elektrostatische Abstoßung untereinander – was letztlich zu einer Aggregation und Ausfallen aus der Lösung führen kann.
Den Wissenschaftlern aus Tübingen, Saarbrücken und Oxford ist es nun gelungen nachzuweisen, dass unter bestimmten Bedingungen die weitere Zugabe bestimmter Salze mit hochgeladenen Ionen (zum Beispiel Yttrium- und Lanthansalzen) diese Aggregation rückgängig macht: Die Proteine gehen wieder in Lösung. Dieser Effekt wird erklärt durch eine Ladungsumkehr von ursprünglich dominierend negativem Vorzeichen (Proteine in Lösung) zu nahezu neutral (Aggregation) bis hin zu (durch die starken mehrwertigen Ionen) dominierend positivem Vorzeichen (Wiederauflösung). Dieser Effekt war bereits bekannt von einfachen Kolloiden, sehr fein verteilten Stoffen in einer Flüssigkeit, wie sie zum Beispiel in Dispersionsfarbe Anwendung finden. Doch nun ist der Effekt zum ersten Mal bei den sehr viel komplizierter strukturierten Proteinen gezeigt worden.
Die Experimente zu dieser ersten Entdeckung wurden mit Hilfe optischer Spektroskopie und Röntgenkleinwinkelstreuung unter der Leitung der Physiker Dr. Fajun Zhang und Prof. Frank Schreiber durchgeführt. Sie arbeiteten mit den Theoretikern der Arbeitsgruppen von Dr. Andreas Hildebrandt vom Zentrum für Bioinformatik Saar und Prof. Oliver Kohlbacher vom Zentrum für Bioinformatik Tübingen zusammen, die mit einem neuartigen Zugang den Ladungszustand der Proteine in Lösung realistisch auf dem Computer simulieren konnten. Die Forschergruppe hat nun ein vollständiges Phasendiagramm aufgestellt, in dem aufgeführt ist, wie viel Salz man für die verwendeten Proteine bei welcher Konzentration braucht, um den besonderen Effekt der Wiederauflösung zu erreichen. Damit eröffnen sich neue Perspektiven zum grundlegenden Verständnis von Proteinen und auch für eine Reihe von Anwendungen im Bereich des Umgangs mit Proteinsystemen, zum Beispiel bei der Erzeugung von Proteinkristallen zur Strukturaufklärung.
Nähere Informationen
Die Publikation:
F. Zhang, M. W. A. Skoda, R. M. J. Jacobs, S. Zorn, R. A. Martin, C. M. Martin, G. F. Clark, S. Weggler, A. Hildebrandt, O. Kohlbacher, F. Schreiber: Reentrant Condensation of Proteins in Solution Induced by Multivalent Counterions. Physical Review Letters, 2008, 101, 148101
Ansprechpartner:
Prof. Dr. Frank Schreiber
Institut für Angewandte Physik
Eberhard Karls Universität Tübingen
Auf der Morgenstelle 10
72076 Tübingen
Tel. 0 70 71/29-7 86 63
E-Mail frank.schreiber@uni-tuebingen.de
Media Contact
Weitere Informationen:
http://www.uni-tuebingen.deAlle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Langlebig, Effizient, Nachhaltig: Der Aufstieg von Ceriumoxid-Thermoschaltern
Bahnbrechende Thermoschalter auf Basis von Ceriumoxid erreichen bemerkenswerte Leistungen und revolutionieren die Steuerung des Wärmeflusses mit nachhaltiger und effizienter Technologie. Ceriumoxid-Thermoschalter revolutionieren die Steuerung des Wärmeflusses Thermoschalter, die den Wärmeübergang…
Wie industrielle Roboter Emissionen in der globalen Fertigung reduzieren
Eine neue Studie untersucht die Schnittstelle zwischen industrieller Automatisierung und ökologischer Nachhaltigkeit, wobei der Schwerpunkt auf der Rolle industrieller Roboter bei der Reduzierung der Kohlenstoffintensität von Exporten aus der Fertigung…
Patienten können durch präzise, personalisierte Biokeramische Transplantate heilen
Eine kürzlich veröffentlichte Übersichtsarbeit revolutioniert die Landschaft der craniomaxillofazialen Knochenregeneration durch die Einführung personalisierter biokeramischer Transplantate. Diese bahnbrechende Forschung untersucht die Herstellung und das klinische Potenzial synthetischer Transplantate, die mittels…