Schalter für DNA-Reparatur-Werkzeug entdeckt

Struktur des Proteinkomplex´ der Proteine XPD (grün) und MAT1 (blau). Die Ausschnittsvergrößerung zeigt die hoch aufgelöst Röntgen-Struktur der Binderegionen beider Proteine. AG Kisker, RVZ, Universität Würzburg

Das Erbgut des Menschen ist ständig schädlichen Einflüssen, wie z.B. dem UV-Licht der Sonne, ausgesetzt. Werden diese Schäden in der DNA nicht rechtzeitig repariert, können Krebserkrankungen oder vorzeitiges Altern die Folge sein.

Unser Organismus hat im Laufe der Zeit effiziente Reparaturmechanismen entwickelt, die verschiedensten Schädigungen im Erbgut entgegenwirken können. Die NER ist einer dieser Mechanismen.

Um diese komplexen biologischen Prozesse zu koordinieren, ist es von größter Wichtigkeit, dass alle beteiligten Komponenten streng reguliert und aufeinander abgestimmt sind. Das XPD-Protein nimmt dabei eine Schlüsselstellung in der DNA-Reparatur ein.

Wichtige funktionale Region in der DNA-Reparatur identifiziert

Um das Zusammenspiel der beteiligten Proteine besser zu verstehen, analysierten die Arbeitsgruppen von Prof. Dr. Caroline Kisker vom Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Julius-Maximilians-Universität (JMU) Würzburg und Prof. Dr. Jean Marc Egly vom Institut de Génétique et de Biologie Moléculaire et Cellulaire der Universität Strasbourg (Frankreich) deren molekulare Struktur.

Die beiden Forschungsgruppen konnten in einem kombinatorischen Ansatz jetzt eine neue funktionale Region im XPD-Protein identifizieren, welche sowohl mechanistisch für die XPD Aktivität, als auch für die Interaktion mit anderen Proteinen essentiell ist.

„Unsere strukturbiologischen Analysen haben es ermöglicht, den Mechanismus der XPD Regulation durch MAT1 aufzuschlüsseln, was wiederum wichtige Rückschlüsse auf die XPD Funktion zulässt“, berichtet Kisker.

MAT1 ist wichtigster Interaktionspartner

Eine zentrale Einheit der NER ist der Protein-Komplex TFIIH, der aus zehn Untereinheiten besteht. Dem Protein XPD kommt im TFIIH eine Schlüsselrolle zu, sowohl bei der DNA-Reparatur als auch bei der Transkription, also dem normalen Ablesen der DNA.

Allerdings darf das Protein ausschließlich während seiner Reparaturfunktion als Enzym aktiv sein. Wie das XPD für die verschiedenen Situationen an- und ausgeschaltet wird, konnten die Wissenschaftler nun zeigen: Das Protein MAT1 ist als Interaktionspartner für die Steuerung enorm wichtig.

Den Forschungsgruppen gelang es, die molekulare dreidimensionale Struktur (Kristallstruktur) der XPD-Arch-Domäne und seinen Interaktionspartner MAT1 zu identifizieren. „Dies hat es uns ermöglicht, funktional wichtige Bereiche innerhalb des Interaktionsbereiches im XPD Protein zu analysieren, die unerlässlich für eine funktionale NER sind“, erklärt Dr. Jochen Kuper.

Zum einen sind diese Bereiche direkt mit der Aktivität des Proteins verbunden und zum anderen regulieren sie nachfolgende Prozesse durch die Rekrutierung und Positionierung von wichtigen „downstream“ NER Komponenten. Ist MAT1 an XPD gebunden, werden diese Bereiche verdeckt und XPD ist inaktiv.

XPD in der Krebstherapie

Auch in Zukunft wird die Funktion der NER stark im Fokus stehen, da dieser essentielle Mechanismus ebenso bei der Behandlung von Krebserkrankungen eine Rolle spielt. Viele Krebs-Chemotherapeutika greifen die DNA von Krebszellen an, verursachen erhebliche Schäden in ihrem Genom und führen damit zum Tod der Krebszellen.

Ein effektiver DNA-Reparaturmechanismus in den Krebszellen kann dies aber verhindern und somit die Wirkung des Therapeutikums stark abschwächen. Die DNA-Reparaturinhibitoren eröffnen somit einen attraktiven Weg in der Krebsbehandlung.

„Bereits jetzt sehen wir, dass die NER wichtige Zielstrukturen für die Krebstherapie liefern kann. Gerade das XPD Protein nimmt aufgrund seiner zentralen Bedeutung hier eine Schlüsselstellung ein“, betont Kisker.

„Wir arbeiten gerade intensiv daran, weitere zentrale Komponenten des TFIIH zu analysieren, um deren Struktur-Funktionsbeziehung zu klären. Außerdem haben wir eine Kampagne initiiert, um Wirkstoffe gegen das XPD Protein zu identifizieren und sie auf ihre therapeutische Nutzbarkeit zu überprüfen“, ergänzen Kisker und Kuper.

Personen
Dr. Jochen Kuper (Postdoktorand) forscht in der Arbeitsgruppe von Prof. Dr. Caroline Kisker am Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg.

Prof. Dr. Caroline Kisker ist unter anderem Leiterin des Lehrstuhls für Strukturbiologie und Dekanin der Graduate School of Life Sciences der Universität Würzburg. Seit April 2016 gehört sie zur Doppelspitze in der Leitung des Rudolf-Virchow-Zentrums für Experimentelle Biomedizin der Universität Würzburg. Mehr Informationen: https://www.uni-wuerzburg.de/rvz/lehrstuehle/lehrstuhl-fuer-strukturbiologie/abo…

Prof. Dr. Caroline Kisker (Lehrstuhl für Strukturbiologie, Rudolf-Virchow-Zentrum)
Tel. +49 (0)931 31 80381, caroline.kisker@virchow.uni-wuerzburg.de

Stefan Peissert, Florian Sauer, Daniel B. Grabarczyk, Cathy Braun, Gudrun Sander, Arnaud Poterszman, Jean-Marc Egly, Jochen Kuper and Caroline Kisker: In TFIIH the Arch domain of XPD is mechanistically essential for transcription and DNA repair. Nature Communications (April 2020), doi 10.1038/s41467-020-15241-9

https://www.uni-wuerzburg.de/rvz/neuigkeiten/single/news/schalter-fuer-dna-repar…

Media Contact

Dr. Daniela Diefenbacher idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Sensoren für „Ladezustand“ biologischer Zellen

Ein Team um den Pflanzenbiotechnologen Prof. Dr. Markus Schwarzländer von der Universität Münster und den Biochemiker Prof. Dr. Bruce Morgan von der Universität des Saarlandes hat Biosensoren entwickelt, mit denen…

3D-Tumormodelle für Bauchspeicheldrüsenkrebsforschung an der Universität Halle

Organoide, Innovation und Hoffnung

Transformation der Therapie von Bauchspeicheldrüsenkrebs. Bauchspeicheldrüsenkrebs (Pankreaskarzinom) bleibt eine der schwierigsten Krebsarten, die es zu behandeln gilt, was weltweite Bemühungen zur Erforschung neuer therapeutischer Ansätze anspornt. Eine solche bahnbrechende Initiative…

Leuchtende Zellkerne geben Schlüsselgene preis

Bonner Forscher zeigen, wie Gene, die für Krankheiten relevant sind, leichter identifiziert werden können. Die Identifizierung von Genen, die an der Entstehung von Krankheiten beteiligt sind, ist eine der großen…