Schutz-Symbiose führt zu Genverlust beim bakteriellen Partner

Der Europäische Bienenwolf Philanthus triangulum.
Martin Kaltenpoth, Max-Planck-Institut für chemische Ökologie

In einer neuen Studie in PNAS konnten Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für chemische Ökologie und der Universität Mainz zusammen mit einem internationalen Forschungsteam zeigen, dass das Genom der Symbiose-Bakterien von Bienenwölfen im Begriff ist, sich auf die wichtige Schutzfunktion zu reduzieren: die Antibiotika-Produktion. Das Genom der Bakterien ist von großem Interesse, um die Evolution und den Prozess der Genomerosion zu verstehen, und um nachzuvollziehen, wie sich die Kooperation und der gegenseitige Nutzen von Bakterien und ihren Wirtsinsekten über lange Zeiträume entwickelt haben.

Fluoreszenz-in-situ-Hybridisierung (FISH) symbiotischer Bakterien auf dem Kokon eines Bienenwolfs
Martin Kaltenpoth, Max-Planck-Institut für chemische Ökologie

Antibiotika schützen den Nachwuchs von Bienenwölfen, einer Grabwespenart, im Kokon vor schädlichen Pilzen. Für die Bildung der schützenden Substanzen sind Symbiose-Bakterien der Gattung Streptomyces zuständig, die in diesen Insekten leben. In einer neuen Studie in PNAS konnten Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für chemische Ökologie und der Universität Mainz zusammen mit einem internationalen Forschungsteam zeigen, dass diese nützlichen Bakterien genetisches Material verlieren, das nicht mehr gebraucht wird. Das Genom der Bakterien ist von großem Interesse, um die Evolution und den Prozess der Genomerosion zu verstehen, und um nachzuvollziehen, wie sich die Kooperation und der gegenseitige Nutzen von Bakterien und ihren Wirtsinsekten über lange Zeiträume entwickelt haben (PNAS, doi: 10.1073/pnas.2023047118, April 2021).

Eine uralte Schutz-Symbiose sorgt für das Überleben des Bienenwolfnachwuchses

Bienenwölfe der Gattung Philanthus gehören zu den Grabwespen und jagen – wie der Name nahelegt – Bienen als Nahrungsgrundlage für ihren Nachwuchs. Sie legen Bruthöhlen im Boden an, vergraben dort ihre Beute und legen ihre Eier ab. Um ihren Nachwuchs in den feuchtwarmen Lebensbedingungen im Boden vor Schimmelpilzen zu schützen, sondert das Bienenwolfweibchen aus seinen Antennen eine Substanz ab, die symbiotische Bakterien der Gattung Streptomyces enthält. Diese produzieren einen Cocktail aus verschiedenen antibiotischen Wirkstoffen, der von den Bienenwolflarven in ihren Kokon eingesponnen wird. Diese bereits seit mehr als 68 Millionen Jahren bestehende Schutz-Symbiose sorgt dafür, dass der Bienenwolfnachwuchs gegen schädliche Mikroorganismen gefeit ist.

Anzeichen einer Genomerosion beim bakteriellen Partner

Das Genom der mit dem Europäischen Bienenwolf Philanthus triangulum assoziierten Bakterien Streptomyces philanthi wurde jetzt von einem Team um Martin Kaltenpoth, dem Direktor der neuen Abteilung Insektensymbiose am Max-Planck-Institut für chemische Ökologie, näher untersucht. „Wir fragten uns, ob eine so lange Beziehung mit dem Wirt zu Veränderungen im Genom und der Steuerung aktiver Gene sowie dem Zusammenspiel der Stoffwechselprozesse von Bienenwolf und seinen bakteriellen Partnern geführt hat“, erläutert Mario Sandoval-Calderón, einer der beiden Erstautoren, die Motivation für diese Arbeit.

Mit Hilfe neuester Gensequenzierungsmethoden gelang es den Forschenden, das vollständige Genom des Symbionten auszulesen. Dabei fiel die Anhäufung von „Pseudogenen“ auf, die infolge einer Leserasterverschiebung der kodierenden Basenpaare entstehen. „Diese Frameshift-Mutationen wahrscheinlich inaktivierter Gene sind sichere Hinweise auf eine beginnende Genom-Erosion bei Streptomyces philanthi. Während das Ergebnis einer Genom-Erosion gut charakterisiert ist, ist der Beginn dieses Prozesses weniger gut verstanden. Daher kann uns der Zugang zu einem Organismus im Anfangsstadium des Genomzerfalls helfen zu verstehen, wie es zu einem solchen Prozess kommt“, sagt Studienleiter Martin Kaltenpoth.

Gene: reduziert auf die Schutzsymbiose?

Weitere genetische Analysen deuteten darauf hin, dass der Stoffwechsel der bakteriellen Symbionten hauptsächlich auf die Produktion von antibiotischen Substanzen ausgerichtet ist, die für den Schutz des Bienenwolfnachwuchses notwendig sind. Nicht geklärt werden konnte die Frage, warum die Antibiotika auch in den Antennen der Bienenwolfweibchen produziert werden und dann über die Absonderung einer Substanz, die auch die Bakterien enthält, in die Bruthöhle abgegeben werden. Ihre tatsächliche Schutzfunktion wurde bislang nur auf dem Kokon nachgewiesen.

Dafür lieferten die Analysen Hinweise auf bestimmte Aminosäuren, die der Wirt seinen Symbiose-Partnern in den Antennendrüsenreservoirs zuführen muss, weil Streptomyces philanthi diese Nährstoffe selbst nicht mehr herstellen können. Damit hätten Bienenwölfe gar die Kontrolle über die Antibiotika-Produktion und wären in der Lage, den von ihren bakteriellen Partnern erbrachten Nutzen selbst zu regulieren, um den Schutz ihrer Nachkommen zu optimieren. Weitere Analysen müssen diese Vermutung nun weiter untermauern.

Dass dieser Genomzerfall bei den Symbionten erst im Anfangsstadium zu sein scheint, überrascht nach dieser überaus langen Zeit der Partnerschaft mit dem Europäischen Bienenwolf. Daher untersuchen die Wissenschaftlerinnen und Wissenschaftler nun auch die Symbionten-Stämme anderer, verwandter Bienenwolfarten. „Möglicherweise erfahren nur einige Stämme dieser Bakterien eine Genomerosion. Das Verständnis der Gründe dafür und der Faktoren, die diesen Prozess in Gang setzen, könnte uns wertvolle Hinweise über die Kräfte liefern, die die Genomevolution im Allgemeinen steuern,“ hofft Martin Kaltenpoth.

Die modernen Werkzeuge der Molekularbiologie machen es zunehmend möglich, die Wechselwirkungen zwischen Lebewesen von der Ebene der Moleküle bis hin zu ökologischen und evolutionsbiologischen Fragestellungen zu untersuchen – auch in Nicht-Modell-Organismen. Ihre Anwendung auf die vielfältigen Symbiosen zwischen Insekten und ihren bakteriellen Partnern hilft dabei, das Zusammenleben dieser Organismen, ihren gegenseitigen Nutzen sowie ihre Ko-Evolution immer besser zu verstehen.

Kontakt und Medienanfragen:

Angela Overmeyer M.A., Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Str. 8, 07745 Jena, +49 3641 57-2110, E-Mail overmeyer@ice.mpg.de

Download von Videos und hochaufgelösten Fotos über http://www.ice.mpg.de/ext/downloads2021.html

Wissenschaftliche Ansprechpartner:

Prof. Dr. Martin Kaltenpoth, e-mail kaltenpoth@ice.mpg.de, +49 3641 57 1500, Max-Planck-Institut für chemische Ökologie, Hans-Knöll-Straße 8, 07745 Jena

Originalpublikation:

Nechitaylo, T. Y., Sandoval-Calderón, M., Engl, T., Wielsch, N., Dunn, D. M., Goesmann, A., Strohm, E., Svatoš, A., Dale, C., Weiss, R. B., Kaltenpoth, M. (2021). Incipient genome erosion and metabolic streamlining for antibiotic production in a defensive symbiont. Proceedings of the National Academy of Sciences of the United States of America, doi: 10.1073/pnas.2023047118
https://doi.org/10.1073/pnas.2023047118

Weitere Informationen:

http://www.ice.mpg.de/ext/index.php?id=insect-symbiosis&L=1 Abteilung Insektensymbiose am Max-Planck-Institut für chemische Ökologie

http://www.ice.mpg.de/

Media Contact

Angela Overmeyer Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für chemische Ökologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Muster mikrobieller Evolution im See Mendota, analysiert mit Metagenom-Daten und saisonalen Einblicken.

Ein endloser Kreislauf: Wie sich einige Bakterien mit den Jahreszeiten entwickeln

Die längste jemals gesammelte natürliche Metagenom-Zeitreihe mit Mikroben offenbart ein verblüffendes evolutionäres Muster, das sich wiederholt. Ein mikrobielles „Murmeltiertagsjahr“ im Lake Mendota Ähnlich wie Bill Murray im Film „Und täglich…

Mueller-Matrix-Polarimetrie-Technik zur Bewertung der Achillessehnenheilung.

Entdecken Sie bahnbrechende Forschung zur Regeneration der Achillessehne

Achillessehnenverletzungen sind häufig, aber aufgrund der Einschränkungen aktueller Bildgebungstechniken schwer während der Genesung zu überwachen. Forschende unter der Leitung von Associate Professor Zeng Nan von der International Graduate School in…

Echtzeit-Genetische Sequenzierung zur Überwachung neuer Pathogene und Infektionsvarianten

Warum Prävention besser ist als Heilung – Ein neuartiger Ansatz für den Umgang mit Infektionskrankheiten

Forscher haben eine neue Methode entwickelt, um ansteckendere Varianten von Viren oder Bakterien zu identifizieren, die sich unter Menschen auszubreiten beginnen – darunter Erreger von Grippe, COVID, Keuchhusten und Tuberkulose….