Schwebende Raritäten
Magnetfallen für Seltenerd-Ionen könnten zu praktischer Trenntechnologie führen.
Damit die Energiewende gelingt, werden große Mengen an Rohstoffen benötigt. Dazu gehören viele Seltene Erden, bei denen Versorgungsengpässe drohen und für die einfache Ersatzmöglichkeiten fehlen. Da es in Europa derzeit keinen nennenswerten Bergbau von Seltenen Erden gibt, ist das Recycling von Elektronikschrott eine wichtige Quelle. Die Kehrseite der Medaille: Bei der Anreicherung des wertvollen Materials werden umweltgefährdende Chemikalien eingesetzt. Forschende am Helmholtz-Zentrum Dresden-Rossendorf könnten eine Lösung für dieses Problem gefunden haben, wie sie im Journal of Physical Chemistry C berichten: Sie nutzen einfache Magnete, um Seltenerd-Ionen aus Lösungen einzufangen.
Magnetfelder werden routinemäßig eingesetzt, um Partikel aufgrund ihrer unterschiedlichen magnetischen Eigenschaften zu trennen. Diese Technik hat sich für Materialien bewährt, die in einem angelegten Magnetfeld stark magnetisiert werden können, zum Beispiel Eisen. Aber gilt das auch für viel schwächere magnetische Materialien, wie etwa paramagnetische Seltenerd-Metallionen? „Die räumlich begrenzte Anreicherung solcher Ionen in einer wässrigen Lösung unter dem Einfluss von Magnetfeldern ist ein verblüffender Effekt, der zwar beobachtet wurde, dessen Verständnis jedoch neue physikalische Einsichten erfordert“, sagt Dr. Zhe Lei vom Institut für Fluiddynamik am HZDR. Sein Team ist seit einiger Zeit dabei, die detaillierten Grundlagen dieses komplexen Phänomens zu erforschen.
Von der Kartierung einer Landschaft zum optimalen Schweben
Die Triebkraft, die auf magnetisierte Teilchen in Magnetfeldern wirkt, hängt von der Stärke und der Art des Feldes ab, worauf jedes Material wiederum mit einer charakteristischen Magnetisierung reagiert. Diesen Umstand macht sich Leis Team zunutze, wie der Forscher erläutert: „Um die ursprünglich über die ganze Lösung verteilten Seltenerd-Ionen effizient abtrennen zu können, müssen wir zunächst dafür sorgen, dass sie sich in einer Schicht anreichern. Das gelingt uns mit unserem Magneten.“
Dessen Kraft ermöglicht es, Objekte in einen Schwebezustand zu versetzen und sie so in einer deutlich ausgeprägten Schicht anzusammeln. Die Zugabe von Wasser zum System hilft zudem, makroskopische Objekte in der Schwebe zu halten, da der Auftrieb den Hebevorgang unterstützt. Wenn die Forschenden jedoch die Dimension der betrachteten Teilchen auf die Größe von Ionen reduzieren, müssen sie auch die Zusammenstöße der umgebenden Moleküle berücksichtigen, die sich in der Lösung in ständiger thermischer Bewegung befinden. Deren kinetische Energie übersteigt die magnetische Energie, und der Hebeeffekt „verschwindet“. Hier ist ein zusätzlicher Prozess gefragt: „Wir haben herausgefunden, dass eine gewisse Verdunstung des Wassers an der Oberfläche der Lösung stattfinden muss, damit die Anreicherung gelingt. Dabei nimmt die Dichte der neu gebildeten oberflächennahen Schicht zu, wodurch eine Tendenz zur Vermischung mit der darunterliegenden Schicht entsteht. Der nach oben gerichtete Magnetfeldgradient wirkt jedoch der Schwerkraft entgegen und hält die Anreicherungszone in der Schwebe, was sie vor Vermischung schützt“, berichtet Lei.
Dieses Wissen könnte als eigenständige Technologie angewandt oder in großtechnische Lösungsmittel-Extraktionsprozesse integriert werden. Für die Entwicklung eines Prototyps, der dieses Prinzip nutzt, ist jedoch ein detailliertes Verständnis der Stabilität des Systems erforderlich. „Um dieses Problem anzugehen, mussten wir die einzelnen Beiträge von Schwerkraft, Auftrieb und Magnetfeld zu einem Raum zusammenführen, der einer Landschaft sehr ähnlich ist: die so genannte Oberfläche der potenziellen Energie, eine topologische Struktur, die in ihrer Darstellung an eine Wanderkarte erinnert. Doch anstatt Berge oder Wasserfälle zu zeigen, gibt sie uns eine Vorstellung davon, wo sich im Laufe der Zeit hohe Metallionen-Konzentrationen bilden“, beschreibt Lei den numerischen Teil der Teamarbeit.
Kostengünstige Magnete machen es möglich
Eine entscheidende Herausforderung der magnetischen Trenntechnik ist die Verfügbarkeit starker Magnetfelder. Supraleitende Magnete sind eine Möglichkeit, aber sie haben einen hohen Preis. Leis Team schlägt einen wirtschaftlicheren Ansatz vor – eine intelligente Anordnung von Magneten auf Neodym-Basis, den stärksten im Handel erhältlichen Permanentmagneten: Ein Stabmagnet, der so in einen Ringmagneten eingesetzt wird, dass die jeweiligen Magnetisierungen in entgegengesetzte Richtungen zeigen, funktioniert hinsichtlich eines optimalen Trennprozesses am besten.
Das Team untersuchte nun, wie stark das Feld ist, das ihre Magnetanordnung erzeugt. Das Ergebnis: Die Intensität des magnetischen Gradienten von Leis Anordnung ist etwa fünfzigmal stärker als die von Referenzsystemen, die an der Harvard-Universität in den USA entwickelt wurden. „Mit Hilfe von Computermodellen konnten wir zudem den genauen Ort bestimmen, an dem sich unsere Testpartikel unter dem Einfluss des Magnetfelds ansammeln, und zwar unabhängig von ihrer Ausgangsposition in der Lösung. Parallel dazu haben wir die Lage dieses Anreicherungsorts mit Hilfe der Mikroskopie gemessen. Die experimentellen Daten stimmen mit dem modellierten Ergebnis so gut überein, dass wir nun im Umkehrschluss die Informationen über das Magnetfeld kostengünstig allein aus den optischen Messungen rekonstruieren können“, fasst Lei zusammen. Inzwischen haben die Forschenden ein Verfahren zur Bestimmung der magnetischen Gradientenkraft und ihrer räumlichen Verteilung zum Patent angemeldet.
Publikation:
Z. Lei, B. Fritzsche, R. Salikhov, K. Schwarzenberger, O. Hellwig, K. Eckert, Magnetic Separation of Rare-Earth Ions: Property Database and Kelvin Force Distribution, in Journal of Physical Chemistry C, 2022 (DOI: 10.1021/acs.jpcc.1c09748)
Diese Arbeit wird vom Deutschen Zentrum für Luft- und Raumfahrt (DLR) mit Mitteln des Bundesministeriums für Wirtschaft und Energie (BMWi) aufgrund eines Beschlusses des Deutschen Bundestages unter dem Förderkennzeichen DLR 50WM2059 (Projekt MAGSOLEX) finanziell unterstützt.
Weitere Informationen:
Dr. Zhe Lei | Prof. Kerstin Eckert
Institut für Fluiddynamik am HZDR
Tel.: +49 351 463 35269 | +49 351 260 3860
E-Mail: z.lei@hzdr.de | k.eckert@hzdr.de
Medienkontakt:
Simon Schmitt | Leitung und Pressesprecher
Abteilung Kommunikation und Medien am HZDR
Tel.: +49 351 260 3400 | E-Mail: s.schmitt@hzdr.de
Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
Das HZDR entwickelt und betreibt große Infrastrukturen, die auch von externen Messgästen genutzt werden: Ionenstrahlzentrum, Hochfeld-Magnetlabor Dresden und ELBE-Zentrum für Hochleistungs-Strahlenquellen.
Es ist Mitglied der Helmholtz-Gemeinschaft, hat sechs Standorte (Dresden, Freiberg, Görlitz, Grenoble, Leipzig, Schenefeld bei Hamburg) und beschäftigt knapp 1.400 Mitarbeiter*innen – davon etwa 500 Wissenschaftler*innen inklusive 170 Doktorand*innen.
Wissenschaftliche Ansprechpartner:
Dr. Zhe Lei | Prof. Kerstin Eckert
Institut für Fluiddynamik am HZDR
Tel.: +49 351 463 35269 | +49 351 260 3860
E-Mail: z.lei@hzdr.de | k.eckert@hzdr.de
Originalpublikation:
Z. Lei, B. Fritzsche, R. Salikhov, K. Schwarzenberger, O. Hellwig, K. Eckert, Magnetic Separation of Rare-Earth Ions: Property Database and Kelvin Force Distribution, in Journal of Physical Chemistry C, 2022 (DOI: 10.1021/acs.jpcc.1c09748)
Weitere Informationen:
https://www.hzdr.de/presse/magnetic_trapping_rare-earth_ions
Media Contact
Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Selen-Proteine: Neuer Ansatzpunkt für die Krebsforschung
Eine aktuelle Studie der Uni Würzburg zeigt, wie ein wichtiges Enzym in unserem Körper bei der Produktion von Selen-Proteinen unterstützt – für die Behandlung von Krebs bei Kindern könnte diese…
Pendler-Bike der Zukunft
– h_da präsentiert fahrbereiten Prototyp des „Darmstadt Vehicle“. Das „Darmstadt Vehicle“, kurz DaVe, ist ein neuartiges Allwetter-Fahrzeug für Pendelnde. Es ist als schnelle und komfortable Alternative zum Auto gedacht, soll…
Neuartige Methode zur Tumorbekämpfung
Carl-Zeiss-Stiftung fördert Projekt der Hochschule Aalen mit einer Million Euro. Die bisherige Krebstherapie effizienter gestalten bei deutlicher Reduzierung der Nebenwirkungen auf gesundes Gewebe – dies ist das Ziel eines Projekts…