Selbstheilender Kunststoff wird biologisch abbaubar

Rasterelektronenmikroskopische Aufnahme des neuen Mineralplastiks.
Bilder: © Avasthi et al.; https://doi.org/10.1002/smtd.202300575; Lizenz: CC BY 4.0

Konstanzer Chemiker*innen entwickeln Mineralplastik mit zahlreichen positiven Eigenschaften aus nachhaltigen Grundbausteinen und weisen gemeinsam mit Kollegen aus der Biologie dessen sehr gute mikrobiologische Abbaubarkeit nach.

Stellen Sie sich einen Kunststoff wie diesen vor: Er ist härter als gängige Kunststoffe, nicht brennbar und besitzt sogar Selbstheilungskräfte. Doch damit nicht genug! Seine Herstellung erfolgt bei Raumtemperatur in Wasser, also energieeffizient und ohne giftige Lösungsmittel. Dabei ist der Kunststoff vor seiner Aushärtung frei nach Wunsch formbar – wie Kaugummi. Durch Wasserzusatz kann er außerdem jederzeit wieder in seine „Kaugummi-Form“ überführt werden und ist so beliebig oft durch Umformung rezyklierbar.

Schematische Darstellungen der Wechselwirkungen im Mineralplastik. Die geschwungene schwarze Linie entspricht dem Polyglutaminsäure-Rückgrat des Mineralplastiks. Bilder: © Avasthi et al.; https://doi.org/10.1002/smtd.202300575; Lizenz: CC BY 4.0

So etwas gibt es nicht? Gibt es wohl – und zwar bereits seit einigen Jahren! Entwickelt wurde der Kunststoff in der Arbeitsgruppe des Konstanzer Chemikers Helmut Cölfen, die das Material – ein sogenanntes Mineralplastik – 2016 vorstellte. Doch auch wenn der Kunststoff mit seinem neuartigen Herstellungsverfahren und den herausragenden Materialeigenschaften seitdem auf großes Interesse seitens der Industrie stieß, hatte er aus Sicht der Konstanzer Chemiker*innen noch ein entscheidendes Manko: Aufgrund seiner chemischen Zusammensetzung war er nur schwer biologisch abbaubar.

Mit neuem Grundbaustein zu mehr Umweltverträglichkeit

„Bisher haben wir für die Herstellung unseres Mineralplastiks Polyacrylsäure verwendet. Chemisch betrachtet besitzt diese dasselbe Rückgrat wie Polyethylen, welches bekanntermaßen in der Umwelt große Probleme verursacht, weil es kaum biologisch abbaubar ist“, erklärt Cölfen. Die Konstanzer Chemiker*innen um Cölfen und Ilesha Avasthi, Postdoc in Cölfens Labor, machten sich daher ans Werk. Sie begaben sich auf die Suche nach einem alternativen Grundbaustein, um ein umweltverträgliches Mineralplastik zu entwickeln, das die interessanten Eigenschaften des ursprünglichen Materials beibehält. Und sie wurden fündig.

In ihrer aktuellen Publikation in der Fachzeitschrift Small Methods stellen die Konstanzer Chemiker*innen nun die nächste Generation ihres Mineralplastiks vor. Anstatt aus erdölbasierten Grundbausteinen wie der Polyacrylsäure besteht dieses aus Polyglutaminsäure. Dieses natürliche Biopolymer ist problemlos in großen Mengen verfügbar und kann sogar nachhaltig gewonnen werden, beispielsweise aus biotechnologischer Produktion durch Mikroorganismen. Darüber hinaus gibt es bereits in der Umwelt eine Vielzahl von Mikroorganismen, die Polyglutaminsäure abbauen können.

„Unser neues Mineralplastik hat dieselben positiven Eigenschaften wie das alte, besitzt jedoch den entscheidenden Vorteil, dass sein Grundbaustein – die Polyglutaminsäure – mithilfe von Mikroorganismen hergestellt werden kann und vollkommen biologisch abbaubar ist“, so Cölfen.

Unterstützung von Kollegen aus der Biologie

Um den Nachweis zu erbringen, dass diese biologische Abbaubarkeit auch für das neue Mineralplastik selbst und nicht nur für seine Ausgangkomponenten gilt, holten sich die Chemiker*innen Unterstützung von David Schleheck und Postdoc Harry Lerner vom Fachbereich Biologie der Universität Konstanz. „Herr Cölfen hat in seinem Labor ein neuartiges Mineralplastik entstehen lassen, und unsere Aufgabe war es nun, es mithilfe von Mikroorganismen wieder verschwinden zu lassen“, bemerkt Schleheck mit einem Augenzwinkern.

In entsprechenden Abbauversuchen konnten die Biologen zeigen, dass Mikroorganismen, die beispielsweise in Waldböden zu finden sind, bereits nach wenigen Tagen mit der Verstoffwechslung des Mineralplastiks begannen. Nach nur 32 Tagen hatten die Mikroorganismen den Kunststoff vollständig abgebaut. Es ist den Forschenden also tatsächlich gelungen, das Mineralplastik mit all seinen positiven Materialeigenschaften zusätzlich nachhaltig und sehr gut biologisch abbaubar zu machen.

Faktenübersicht:

– Originalpublikation: I. Avasthi, H. Lerner, J. Grings, C. Gräber, D. Schleheck & H. Cölfen (2023) Biodegradable Mineral Plastics. Small Methods; doi: 10.1002/smtd.202300575
– Konstanzer Studie stellt nachhaltiges und biologisch abbaubares Mineralplastik vor
– Mineralplastik ist härter als gängige Kunststoffe, nicht brennbar und selbstheilend
– Kooperationsprojekt der Fachbereiche Chemie und Biologie der Universität Konstanz
– Förderung: Carl-Zeiss-Stiftung (Projekt INPEW)

Hinweis an die Redaktionen:

Fotos können im Folgenden heruntergeladen werden:

https://www.uni-konstanz.de/fileadmin/pi/fileserver/2023/selbstheilender_kunstst…
Bildunterschrift: Rasterelektronenmikroskopische Aufnahme des neuen Mineralplastiks.
Bilder: © Avasthi et al.; https://doi.org/10.1002/smtd.202300575; Lizenz: CC BY 4.0

https://www.uni-konstanz.de/fileadmin/pi/fileserver/2023/selbstheilender_kunstst…
Bildunterschrift: Schematische Darstellungen der Wechselwirkungen im Mineralplastik. Die geschwungene schwarze Linie entspricht dem Polyglutaminsäure-Rückgrat des Mineralplastiks.
Bilder: © Avasthi et al.; https://doi.org/10.1002/smtd.202300575; Lizenz: CC BY 4.0

https://www.uni-konstanz.de/universitaet/aktuelles-und-medien/aktuelle-meldungen/aktuelles-1/selbstheilender-kunststoff-wird-biologisch-abbaubar/

Media Contact

Helena Dietz Stabsstelle Kommunikation und Marketing
Universität Konstanz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Größte bisher bekannte magnetische Anisotropie eines Moleküls gemessen

An der Berliner Synchrotronstrahlungsquelle BESSY II ist es gelungen, die größte magnetische Anisotropie eines einzelnen Moleküls zu bestimmen, die jemals experimentell gemessen wurde. Je größer diese Anisotropie ist, desto besser…

Tsunami-Frühwarnsystem im Indischen Ozean

20 Jahre nach der Tsunami-Katastrophe… Dank des unter Federführung des GFZ von 2005 bis 2008 entwickelten Frühwarnsystems GITEWS ist heute nicht nur der Indische Ozean besser auf solche Naturgefahren vorbereitet….

Resistente Bakterien in der Ostsee

Greifswalder Publikation in npj Clean Water. Ein Forschungsteam des Helmholtz-Instituts für One Health (HIOH) hat die Verbreitung und Eigenschaften von antibiotikaresistenten Bakterien in der Ostsee untersucht. Die Ergebnisse ihrer Arbeit…