Selbstverdauung als Überlebensstrategie

In Hungerzeiten schnallen Zellen den Gürtel enger: Sie beginnen ihre eigenen Proteine und Zellorganellen zu verdauen. Diese als Autophagie bezeichnete Selbstverdauung findet in speziellen Organellen, den Autophagosomen, statt.

Was bei einfachen Hefezellen eine Überlebensstrategie für schlechte Zeiten ist, hat sich im Laufe der Evolution zu einem Selbstreinigungsprozess weiter entwickelt: In Säugetieren beseitigen die Autophagosomen auch fehlgefaltete Proteine, beschädigte Organellen oder krankmachende Bakterien. Ist diese Funktion gestört, können vermehrt Infektionskrankheiten sowie Krebs, Parkinson oder Alzheimer auftreten.

Biochemiker der Goethe-Universität haben nun in Kooperation mit der Universität Tromsø, Norwegen, dem Weizmann Institut, Israel, und dem Tokyo Metropolitan Institute, Japan, erstmals einen Mechanismus vorgeschlagen, der erklärt, wie die Autophagosomen erkennen, welche Proteine oder Organellen sie verdauen sollen.

„Es ist schon erstaunlich, dass die Autophagie seit über 30 Jahren bekannt ist, aber bisher noch niemand nach Rezeptoren gesucht hat, die dem Prozess seine Selektivität verleihen“, erklärt Prof. Ivan Dikic der am Institut für Biochemie II und am Exzellenzcluster „Makromolekulare Komplexe“ arbeitet. Ihm kam zugute, dass seine Gruppe über viele Jahre einen anderen Selbstreinigungsprozess der Zelle entschlüsselt hat: die Zerlegung kleiner Moleküle im Proteasom, einer Art „molekularen Schredder“. „Wir wissen, dass die zur Entsorgung bestimmten Moleküle mit einem kleinen Protein, dem Ubiquitin, markiert werden. Dieses wird dann von einem Rezeptor am Eingang des Proteasoms erkannt“, sagt Dikic. „Es lag nahe, einen ähnlichen Mechanismus für die Verdauung in Autophagosomen vorzuschlagen“.

Anders als das Proteasom, das eine komplexe molekulare Maschine darstellt, sind Autophagosomen einfach gebaut: Es handelt sich um doppelte Membranen, die im Zytoplasma herum schwimmen. Ähnlich den weißen Blutkörperchen können sie größere Proteine oder sogar Zellorganellen einschließen. Da sie keine eigenen Enzyme besitzen, um ihren Inhalt zu verdauen, verschmelzen sie anschließend mit Lysosomen. Als kürzlich die Gruppe von Yoshinori Ohsumi vom National Institute for Basic Biology im japanischen Okazaki berichtete, die Außenseite der Autophagosomen sei mit Ubiquitin ähnlichen Proteinen (ATG8) bestückt, und nachwies, dass diese für die Autophagie spezifisch sind, wurden Dikic und sein Mitarbeiter Dr. Vladimir Kirkin hellhörig. Sie begannen gezielt nach Kandidaten für Autophagie-Rezeptoren zu suchen, die an die Familie der ATG8-Proteine binden.

Wie die Forscher in der aktuellen Ausgabe der renommierten Fachzeitschrift Molecular Cell berichten, konnten sie mit Methoden der Zellbiologie, Biochemie und Maus-Genetik neben dem bereits bekannten p62/SQSTM1-Protein ein weiteres Protein identifizieren, das als Rezeptor infrage kommt: das in Tumoren gehäuft auftretende Probein MBR1. Beide Proteine haben eine ähnliche, kettenförmige Struktur. An einen Ende binden sie an Ubiquitin, das die zur Entsorgung bestimmten Protein-Aggregate und Organellen kennzeichnet. Benachbart zu dem Ubiquitin bindenden Ende der Rezeptor-Proteine befindet sich eine Domäne, die an die Familie der ATG8-Proteine auf der äußeren Membran der Autophagosomen bindet. Auf diese Weise könnte der „Protein-Schrott“ am Autophagosom andocken und anschließend von der Membran umschlossen werden.

Kirkin, der inzwischen bei der Firma Merck Serono in Darmstadt arbeitet, verfolgt dort die Möglichkeit, diese Erkenntnisse für die Entwicklung neuer Wirkstoffe nutzbar zu machen. Dikic und seine Gruppe wollen unterdessen auch bei Mitochondrien, die für oxydativen Stress in der Zelle verantwortlich sind, nach Rezeptoren für die Autophagie auf diesen wichtigen Zellorganellen suchen.

Informationen: Prof. Ivan Dikic, Institut für Biochemie II, Campus Niederrad,
Tel: (069) 6301-83647; ivan.dikic@ biochem2.de
Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. Vor 94 Jahren von Frankfurter Bürgern gegründet, ist sie heute eine der zehn größten Universitäten Deutschlands. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Rund um das historische Poelzig-Ensemble im Frankfurter Westend entsteht derzeit für rund 600 Millionen Euro der schönste Campus Deutschlands. Mit über 50 seit 2000 eingeworbenen Stiftungs- und Stiftungsgastprofessuren nimmt die Goethe-Uni den deutschen Spitzenplatz ein. In drei Forschungsrankings des CHE in Folge und in der Exzellenzinitiative zeigt sich die Goethe-Universität als eine der forschungsstärksten Hochschulen.

Herausgeber Der Präsident der Goethe-Universität Frankfurt am Main. Redaktion Dr. Anne Hardy, Referentin für Wissenschaftskommunikation. Abteilung Marketing und Kommunikation, Senckenberganlage 31, 60325 Frankfurt am Main, Tel: (069) 798-9228, Fax: (069) 798-28530, hardy@pvw.uni-frankfurt.de

Media Contact

Dr. Anne Hardy idw

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Sie verwandelt Materie mit Licht

Halb Chemikerin, halb Physikerin und voll und ganz Forscherin: Niéli Daffé befasst sich mit Materialien, die, wenn beleuchtet, Farbe oder Magnetisierung ändern. Mit SNF-Unterstützung untersucht sie dies mit Röntgenstrahlen. Schon…

Intelligentes Auto erkennt Herz-Kreislauf-Erkrankungen

Rund 270.000 Menschen erleiden in Deutschland pro Jahr einen Schlaganfall. Jeder fünfte Betroffene stirbt innerhalb der ersten Wochen an den Folgen. Um einem Schlaganfall vorzubeugen, ist es wichtig, die Symptome…

Neue Standards für die Oberflächenanalyse von Nanopartikeln

Die Bundesanstalt für Materialforschung und -prüfung (BAM) entwickelt in einem neuen EU-Projekt standardisierte Messverfahren zur Untersuchung der Oberflächen von Nanopartikeln. Ziel ist es, die Funktionalität und Sicherheit von Nanopartikeln weiter…