So könnten Pflanzen Sonnenlicht effizienter nutzen
Pflanzen produzieren mithilfe der Photosynthese Sauerstoff, Nahrung und Bioenergie. Doch der komplexe biochemische Prozess ist ineffizient, nur ein Bruchteil der Sonnenenergie wird bei der Photosynthese wirklich genutzt. Forschende wollen dies ändern und so die Erträge von Kulturpflanzen steigern. Ein Münchner Forschungsteam hat jetzt herausgefunden, dass die Außenhülle der Chloroplasten dabei eine Schlüsselrolle spielen könnte.
Pflanzen nehmen Kohlendioxid auf und wandeln es mithilfe der Sonne und Wasser in Biomasse und Sauerstoff um. Ohne die Photosynthese wäre Leben wie wir es kennen nicht möglich. Doch der Vorgang ist ineffizient, die Pflanzen verwerten nur einen geringen Anteil der Sonnenenergie. Forschende auf der ganzen Welt versuchen, den Prozess zu entschlüsseln, um ihn zu optimieren – und schneller mehr Biomasse produzieren zu können.
Logistik als limitierender Faktor
Ein Forschungsteam unter Leitung von Franz Hagn, Professor für Strukturelle Membranbiochemie an der TUM und Research Group Leader bei Helmholtz Munich, hat einen neuen Ansatzpunkt zur Optimierung der Photosynthese untersucht. Dabei fokussieren sich die Forschenden nicht auf den chemischen Prozess der Photosynthese, sondern sozusagen auf die Logistik. „Die Ertragssteigerung von einfachen Zuckern und anderen Stoffwechsel-Produkten in den Chloroplasten ist Gegenstand intensiver Forschung“, erklärt Hagn. „Es nutzt aber nichts, nur den Prozess an sich zu verbessern. Die Produkte müssen auch über die innere und äußere Membran aus den Chloroplasten transportiert werden, damit die Pflanze sie für ihr Wachstum verwerten kann.“
Für die innere Membran sind bereits zahlreiche Transportproteine und ihre Funktionsweise im Detail erforscht. Welche Rolle die Außenmembran bei diesem Prozess spielt, war allerdings bisher noch nicht geklärt. „Es gab unter anderem die Theorie, dass die äußere Membran wie eine Art Sieb fungiert, das diese Stoffwechselprodukte dann einfach durchlässt.“
Weitere Transportmechanismen müssen untersucht werden
Dass dem nicht so ist, konnten die Forschenden jetzt zeigen. Sie untersuchten die molekulare Struktur eines Transportproteins in der äußeren Membran und konnten aufklären, mit welchem Mechanismus bestimmte Moleküle nach außen gelangen. Damit konnte das Team belegen, dass ein kontrollierter Transport stattfindet, der nach Ladung und Größe von Metaboliten selektiert. „Die Außenmembran der Chloroplasten wurde lange nicht als Barriere für Stoffwechselprodukte der Photosynthese angesehen. Wir haben nun zeigen können, dass sie wahrscheinlich ein wichtiger limitierender und regulierter Faktor ist“, sagt Hagn.
Die Wissenschaftler:innen wollen nun die strukturellen und funktionellen Details von weiteren Transportproteinen der Außenmembran untersuchen. Langfristig wäre es mithilfe der Ergebnisse möglich, zum Beispiel mehr und größere Transportproteine in die Außenmembran einzubauen, sodass die Stoffwechselprodukte schneller nach außen gelangen und damit das Wachstum der Pflanzen angekurbelt wird. Hagn: „Die Steigerung des Ertrags etwa von Energiepflanzen gewinnt mit Blick auf den Klimawandel, Extremwetter und Energieknappheit eine immer größere Bedeutung.“
Wissenschaftliche Ansprechpartner:
Prof. Dr. Franz Hagn
Technische Universität München
Professur für Strukturelle Membranbiochemie
Bayerisches NMR Zentrum (BNMRZ)
Tel: 089-289-52624
franz.hagn@tum.de
www.bio.nat.tum.de/membrane
www.bnmrz.org
Originalpublikation:
Günsel, U., Klöpfer, K., Häusler, E. et al. Structural basis of metabolite transport by the chloroplast outer envelope channel OEP21. Nat Struct Mol Biol 30, 761–769 (2023).
https://doi.org/10.1038/s41594-023-00984-y
Media Contact
Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie
Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.
Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.
Neueste Beiträge
Lange angestrebte Messung des exotischen Betazerfalls in Thallium
… hilft bei Zeitskalenbestimmung der Sonnenentstehung. Wie lange hat eigentlich die Bildung unserer Sonne in ihrer stellaren Kinderstube gedauert? Eine internationale Kollaboration von Wissenschaftler*innen ist einer Antwort nun nähergekommen. Ihnen…
Soft Robotics: Keramik mit Feingefühl
Roboter, die Berührungen spüren und Temperaturunterschiede wahrnehmen? Ein unerwartetes Material macht das möglich. Im Empa-Labor für Hochleistungskeramik entwickeln Forschende weiche und intelligente Sensormaterialien auf der Basis von Keramik-Partikeln. Beim Wort…
Klimawandel bedroht wichtige Planktongruppen im Meer
Erwärmung und Versauerung der Ozeane stören die marinen Ökosysteme. Planktische Foraminiferen sind winzige Meeresorganismen und von zentraler Bedeutung für den Kohlenstoffkreislauf der Ozeane. Eine aktuelle Studie des Forschungszentrums CEREGE in…