Spurensuche im Pflanzenmikrobiom mit DNA-Strichcodes

Grafische Darstellung: Aus Pflanzen gewonnene Pseudomonas capeferrum-Bakterien, die mit Hilfe des MoBacTag-Toolkits mit verschiedenen fluoreszierenden Tags markiert wurden.
(c) Jana Ordon

Ein Forscherteam unter der Leitung von Paul Schulze-Lefert vom Max-Planck-Institut für Pflanzenzüchtungsforschung in Köln, hat ein modulares Toolkit entwickelt, um Bakterienstämme zu verfolgen, die Pflanzengewebe im Wettbewerb mit anderen Mitgliedern des Mikrobioms besiedeln. Die Studie wurde jetzt in Nature Microbiology veröffentlicht.

Die enorme Vielfalt an Mikroorganismen, die eine gesunde Pflanze in der Natur als Gemeinschaft beherbergt, wird als Pflanzenmikrobiom bezeichnet. Um die Zusammensetzung des mit bloßem Auge unsichtbaren Mikrobioms zu erfassen, wird üblicherweise die DNA-Sequenz eines universellen mikrobiellen Markergens bestimmt, das aus variablen und konservierten Sequenzabschnitten besteht. Auf diese Weise können die mikrobiellen Arten im Mikrobiom anhand der variablen DNA-Sequenzabschnitte voneinander unterschieden werden. Nützliche Aktivitäten von Mitgliedern des Mikrobioms für den Pflanzenwirt, wie z. B. die Mobilisierung von mineralischen Nährstoffen aus dem Boden für die Aufnahme durch die Wurzeln, werden jedoch oft nur von einzelnen Mikrobenstämmen innerhalb einer Art ausgeführt und hängen vom Vorhandensein spezieller Mikrobengenen ab. Die Erstellung von DNA-Sequenz-basierten Mikrobiota-Profilen reicht daher nicht aus, um die tatsächliche genetische Vielfalt der mikrobiellen Gemeinschaft auf dem Pflanzenwirt zu erfassen.

Um dieses Manko zu überwinden, haben Forschende am Max-Planck-Institut für Pflanzenzüchtungsforschung ein modulares Toolkit entwickelt, das als DNA-Strichcode für Bakterienstämme eingesetzt wird. Ein DNA-Strichcode wird zunächst in das Chromosom eines einzelnen Stammes einer Mikrobiomgemeinschaft eingefügt. Bei anschließenden Analysen von Mikrobiomprofilen auf Pflanzen wird der DNA-Strichcode als synthetisches mikrobielles Markergen betrachtet. Neben dem DNA-Strichcode wurden zudem genetische Bausteine für fluoreszierende Proteine eingebaut. Letztere ermöglichen es, mit hochempfindlichen Fluoreszenzdetektoren zu kartieren, wo ein kodierter Bakterienstamm in Konkurrenz zu anderen Mikrobiom-Mitgliedern pflanzliches Gewebe besiedelt.

Anschließend führten die Forschenden Experimente mit dem pflanzenwachstumsfördernden Bakterium Pseudomonas capeferrum durch, das die Wurzeln der Modellpflanze Arabidopsis besiedelt, sowie mit Varianten des Bakteriums, die sich vom Wildtyp-Stamm nur durch das Fehlen bestimmter Gene unterscheiden. Die entsprechenden Pseudomonas-Gene dämpfen die Immunantworten der Wirtspflanze und verstärken dadurch die Fähigkeit des Bakteriums, Pflanzenwurzeln zu besiedeln, was wiederum deren pflanzenwachstumsfördernde Aktivität erhöht. Die mit DNA-Strichcode markierten Pseudomonas-Bakterien zeigten zunächst die erwartete unterschiedlichen Fähigkeiten zur Besiedlung von Arabidopsis-Wurzeln, wenn keimfreie Pflanzen mit einzelnen Stämmen beimpft wurden. Überraschend war jedoch das Auftreten qualitativ neuer Eigenschaften der Bakterien, wenn Kombinationen des Wildtyp-Stammes und seiner Varianten zusammen mit einem im Labor zusammengestellten Mikrobiom-Konsortium aus verschiedenen Bakterien auf den Pflanzenwirt geimpft wurden. In der Biologie wird dieses Phänomen auch als emergente Eigenschaft oder Systemeigenschaft bezeichnet.

Die Verwendung von DNA-Strichcodes bestätigte also nicht nur frühere Ergebnisse, sondern deckte auch neue Aktivitäten der bakteriellen Gene auf, die mit herkömmlichen Methoden nicht hätten identifiziert werden können. Das modulare DNA-Strichcode-Toolkit kann nun für die Mikrobiomforschung eingesetzt werden, um den Beitrag einzelner mikrobieller Gene im Kontext mikrobieller Gemeinschaften nicht nur bei Pflanzen, sondern auch in Mikrobiomstudien an Tieren zu untersuchen.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Paul Schulze-Lefert
Max-Planck-Institut für Pflanzenzüchtungsforschung
Email: schlef@mpipz.mpg.de
Tel: +49 221 5062-350

Originalpublikation:

Chromosomal barcodes for simultaneous tracking of near-isogenic bacterial strains in plant microbiota
https://www.nature.com/articles/s41564-024-01619-8

https://www.mpipz.mpg.de/pr-ordon-2024-de

Media Contact

Dr. Mia von Scheven Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Pflanzenzüchtungsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Schimpanse in einem tropischen Wald, der genetische Anpassungen zum Überleben zeigt.

Parallele Pfade: Das Verständnis von Malariaresistenz bei Schimpansen und Menschen

Die nächsten Verwandten des Menschen passen sich genetisch an Lebensräume und Infektionen an Überleben des am besten Angepassten: Genetische Anpassungen bei Schimpansen aufgedeckt Görlitz, 10.01.2025. Schimpansen verfügen über genetische Anpassungen,…

Ballaststoffreiche Lebensmittel fördern Darmgesundheit und Antikrebswirkung

Du bist, was du isst – Stanford-Studie verbindet Ballaststoffe mit Modulation von Anti-Krebs-Genen

Die Ballaststofflücke: Ein wachsendes Problem in der amerikanischen Ernährung Ballaststoffe sind bekanntlich ein wichtiger Bestandteil einer gesunden Ernährung, doch weniger als 10 % der Amerikaner konsumieren die empfohlene Mindestmenge. Eine…

RNA-bindendes Protein RbpB reguliert den Stoffwechsel der Darmmikrobiota in Bacteroides thetaiotaomicron.

Vertrauen Sie Ihrem Bauchgefühl – RNA-Protein-Entdeckung für eine bessere Immunität

HIRI-Forscher entschlüsseln Kontrollmechanismen der Polysaccharidverwertung in Bacteroides thetaiotaomicron. Forschende des Helmholtz-Instituts für RNA-basierte Infektionsforschung (HIRI) und der Julius-Maximilians-Universität (JMU) Würzburg haben ein Protein sowie eine Gruppe kleiner Ribonukleinsäuren (sRNAs) in…