Stress-Rezeptoren: Der feine Unterschied

Ein Rezeptor der Stressantwort schert allerdings aus der Reihe, wie die Gruppe um Ralf Schülein herausgefunden hat. Durch eine Punktmutation erhält die übliche Signalsequenz des Moleküls eine ganz neue Funktion – der Rezeptor wird auf der Zelloberfläche zum Einzelgänger.

Wie entsteht das Neue in der Welt der Organismen? Ein interessantes Beispiel ist eine eigenartige Anomalie in einem der beiden CRF-Rezeptoren, welche die Gruppe von Ralf Schülein entdeckt und nun genauer untersucht hat. Die CRF-Rezeptoren sind bei Menschen und Säugetieren wichtig für die Reaktion auf Stress: Wenn uns etwas erschreckt oder ängstigt, dann wird unser Körper durch eine ganze Reihe von Nervensignalen und Hormonen binnen kurzer Zeit in Alarmbereitschaft versetzt. Dabei wird unter anderem das Hormon Corticotropin-Releasing-Factor (CRF) im Hypothalamus ausgeschüttet.
Für dieses Stress-Hormon besitzt der Organismus zwei verschiedene Sensoren, den CRF1- und den CRF2-Rezepor. „Der CRF1-Rezeptor vermittelt die eigentliche Stressreaktion, im Übermaß kann seine Aktivierung zu Angst und Depressionen führen“, erklärt Ralf Schülein. Etwas subtiler ist dagegen die Aufgabe des zweiten Sensor: „Der CRF2-Rezeptor scheint bei der Regulierung von Appetit eine Rolle zu spielen und insgesamt ist er eher wichtig dafür, dass die Stressreaktion auch wieder abklingen, wir uns davon erholen.“

Doch was unterscheidet die beiden sehr ähnlichen Rezeptoren, die auf das gleiche Signal reagieren und doch so unterschiedliche Reaktionen im Körper auslösen? Einen merkwürdigen Unterschied fand die Gruppe um Schülein schon vor Jahren. Er betrifft die Adressierung der beiden Rezeptoren, durch die sichergestellt wird, dass die Proteinmoleküle überhaupt an die richtige Stelle gelangen. In jeder Körperzelle werden bis zu 10.000 verschiedene Proteine produziert, die je nach Funktion an unterschiedliche Orte im Zellinneren, aus der Zelle hinaus, oder wie im Fall der CRF-Rezeptoren in die äußere Membran gelangen müssen.
Dafür sorgen Signal-Sequenzen im genetischen Code, die das Protein schon während der Synthese zu einer Membran lenken. In manchen Fällen wird dieses „Adress-Etikett“ von dem fertigen Protein dann abgespalten, so auch im Fall des CRF1-Rezeptors. Der CRF2-Rezeptor besitzt ein fast identisches Signal-Peptid, allerdings mit einem entscheidenden Unterschied. Durch den Austausch eines einzigen Buchstabens ist die Adressierung unleserlich geworden – sie bewirkt nicht wie üblich den Transport zur Membran und wird auch nicht abgetrennt. Die eigentliche Adressierung übernehmen andere Abschnitte im Gen.

Doch ist das „Pseudo-Signal-Peptid“ damit ein nutzloses Artefakt, oder können die Adress-Etiketten von Proteinen auch andere Funktionen haben? Dieser Frage ist Anke Teichmann, eine Doktorandin am FMP, in Zusammenarbeit mit ihren Kollegen einen Schritt näher gekommen. „Meine Hauptarbeit meiner Promotion bestand zunächst in der Methoden-Entwicklung“, sagt die Biophysikerin. Insbesondere etablierte sie die so trickreiche wie elegante Methode des Förster-Resonanzenergietransfer (FRET).
Bei dieser Methode wird ausgenutzt, dass fluoreszierende Moleküle untereinander Energie übertragen können, wenn sie sich sehr nahe kommen. Beträgt ihr Abstand weniger als 10 Nanometer, dann wird die Abstrahlung des einen Partners plötzlich schwächer, die des anderen stärker. Auf diese Weise kann man durch Fluoreszenz-Messungen erkennen, ob zwei in unterschiedlichen Farben fluoreszierende Moleküle sich nahe kommen – obwohl der Abstand von 10 Nanometern eigentlich weit unterhalb der Auflösungsgrenze von Lichtmikroskopen liegt.

Anke Teichmann untersuchte nun mit der FRET-Methode Zellen mit den beiden CRF-Rezeptoren, die mit fluoreszierenden Proteinen in zwei verschiedenen Farben markiert waren. Dadurch und in weiteren Experimenten zeigte sich, dass der CRF2-Rezeptor immer nur als einzelnes Molekül aus der Zelle herausragt – im Gegensatz zum CRF1-Rezeptor, der sich mindestens paarweise zusammenlagert. Und in einem weiteren Schritt konnte die Gruppe zeigen, dass es eben das Pseudo-Signal-Peptid ist, dass den Rezeptor zum Einzelgänger macht. Mutanten des CRF1-Rezepors blieben allein, wenn sie den Signalgeber von CRF2 trugen. Dagegen verpaarte sich der für die Stresserholung zuständige CRF2-Rezeptor, wenn der das normale Signalpeptid von seinem ungleichen Bruder bekam.

„Welche Rolle die Zusammenlagerung der Rezeptoren für die Funktion des Rezeptors spielt, ist nun eine spannende Frage“, sagt Ralf Schülein. Grundsätzlich könnten die sehr individuelle Feinsteuerung der CRF-Rezeptoren durch unterschiedliche Signalpeptide ein interessanter Ansatzpunkt für Medikamente sein, etwa bei der Behandlung von Angststörungen und Depressionen.

Media Contact

Silke Oßwald idw

Weitere Informationen:

http://www.fmp-berlin.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Menschen vs Maschinen – Wer ist besser in der Spracherkennung?

Sind Menschen oder Maschinen besser in der Spracherkennung? Eine neue Studie zeigt, dass aktuelle automatische Spracherkennungssysteme (ASR) unter lauten Bedingungen eine bemerkenswerte Genauigkeit erreichen und manchmal sogar die menschliche Leistung…

KI-System analysiert subtile Hand- und Gesichtsgesten zur Gebärdenspracherkennung.

Nicht in der Übersetzung verloren: KI erhöht Genauigkeit der Gebärdenspracherkennung

Zusätzliche Daten können helfen, subtile Gesten, Handpositionen und Gesichtsausdrücke zu unterscheiden Die Komplexität der Gebärdensprachen Gebärdensprachen wurden von Nationen weltweit entwickelt, um dem lokalen Kommunikationsstil zu entsprechen, und jede Sprache…

Forscherin Claudia Schmidt analysiert durch Gletscherschmelze beeinflusste Wasserproben arktischer Fjorde.

Brechen des Eises: Gletscherschmelze verändert arktische Fjordökosysteme

Die Regionen der Arktis sind besonders anfällig für den Klimawandel. Es mangelt jedoch an umfassenden wissenschaftlichen Informationen über die dortigen Umweltveränderungen. Forscher des Helmholtz-Zentrums Hereon haben nun an Fjordsystemen anorganische…